Главная страница » Что такое мимо в роутере

Что такое мимо в роутере

  • автор:

Роутер 802.11 ас: как работает технология MIMO

Многопользовательская MIMO представляет собой неотъемлемую часть стандарта 802.11 ас. Но до сих пор еще не было устройств, поддерживающих новый вид многоантенной технологии. WLAN-роутеры стандарта 802.11 ас прежнего поколения обозначались как оборудование Wave 1. Только с Wave 2 вводится многопользовательская технология MIMO (MU-MIMO), и во главе этой второй волны устройств идет ASUS RTAC87.

Поскольку многопользовательская технология MIMO передает сигнал одновременно на несколько устройств, соответствующим образом расширяется протокол передачи в части формирования заголовков блоков данных: вместо того чтобы передавать несколько пространственно разделенных потоков для одного клиента, многопользовательская технология MIMO распределяет передачу для каждого пользователя по отдельности, равно как и кодирование. Одинаковым остается распределение полосы частот и кодирование.

Mimo_multiSingle User (однопользовательская) Если четыре устройства делят между собой одну сеть WLAN, то роутер с конфигурацией 4×4:4 MIMO передает четыре пространственных потока данных, но всегда только на одно и то же устройство. Устройства и гаджеты обслуживаются попеременно. Mimo_singleMulti User (многопользовательская) При поддержке многопользовательской MIMO (Multi User MIMO) очередей из устройств, ожидающих доступа к ресурсам WLAN- роутера, не образуется. Ноутбук, планшет, телефон и телевизор обеспечиваются данными одновременно.

Сеть WLAN похожа на оживленную автотрассу: в зависимости от времени суток помимо ПК и ноутбуков к этому движению подключаются планшеты, смартфоны, телевизор и игровые консоли. В среднестатистическом домохозяйстве имеется более пяти устройств, подсоединяемых к Интернету по сети WLAN, и их количество постоянно растет. Со скоростью 11 Мбит/с, которая предусматривается в рамках основного стандарта IEEE 802.11b, веб-серфинг и загрузка данных требуют большого терпения, ведь роутер в каждый конкретный момент времени может быть соединен только с одним устройством. Если радиосвязь используется сразу тремя устройствами, то каждый клиент получает только треть продолжительности сеанса связи, а две трети времени тратится на ожидание. Хотя сети WLAN новейшего стандарта IEEE 802.11ac обеспечивают передачу данных на скоростях до 1 Гбит/с, в них тоже существует проблема падения скорости из-за очередей. Но уже следующее поколение устройств (802.11ac Wave 2) обещает более высокую производительность для радиосетей с несколькими активными устройствами.

Для лучшего понимания сути нововведений следует сначала вспомнить, какие изменения происходили с сетями WLAN в недавнем прошлом. Одним из самых эффективных приемов увеличения скорости передачи данных, начиная со стандарта IEEE 802.1In, является технология MIMO (Multiple Input Multiple Output: многоканальный вход — многоканальный выход). Она подразумевает использование нескольких радиоантенн для параллельной передачи потоков данных. Если, например, через сеть WLAN передается один видеофайл и используется MIMO-роутер с тремя антеннами, каждое передающее устройство в идеальном случае (при наличии трех антенн у приемника) отправит треть файла.

Рост затрат с каждой антенной

В стандарте IEEE 802.11n максимальная скорость передачи данных для каждого отдельного потока вместе со служебной информацией достигает 150 Мбит/с. Устройства с четырьмя антеннами, таким образом, способны передавать данные со скоростью до 600 Мбит/с. Актуальный стандарт IEEE 802.11ac теоретически выходит примерно на 6900 Мбит/с. Помимо широких радиоканалов и улучшенной модуляции новым стандартом предусмотрено использование до восьми потоков MIMO.

Но одно только увеличение числа антенн не гарантирует многократного ускорения передачи данных. Наоборот, с четырьмя антеннами очень сильно возрастает объем служебных данных, а также становится более затратным процесс обнаружения коллизий радиосигналов. Чтобы использование большего числа антенн себя оправдало, технология MIMO продолжает совершенствоваться. Прежнюю MIMO для различения правильнее называть одно-пользовательской MIMO (Single User MIMO). Хотя она обеспечивает одновременную передачу нескольких пространственных потоков, как говорилось ранее, но всегда только по одному адресу. Такой недостаток теперь устраняется с помощью многопользовательской MIMO. С этой технологией роутеры WLAN могут одновременно передавать сигнал четырем клиентам. Устройство с восемью антеннами может, например, использовать четыре, чтобы обеспечить ноутбук и параллельно с помощью двух других — планшет и смартфон.

MIMO – точный направленный сигнал

Чтобы маршрутизатор мог одновременно направлять пакеты WLAN различным клиентам, ему нужна информация о том, где расположены клиенты. Для этого в первую очередь по всем направлениям отсылаются тестовые пакеты. Клиенты отвечают на эти пакеты, и базовая станция сохраняет данные о силе сигнала. Технология формирования лучей является одним из важнейших помощников MU MIMO. Хотя ее поддержка уже предусмотрена стандартом IEEE 802.11n, в IEEE 802.11ac она была усовершенствована. Ее суть сводится к установлению оптимального направления для отправки радиосигнала клиентам. Базовая станция специально задает для каждого радиосигнала оптимальную направленность передающей антенны. Для многопользовательского режима поиск оптимального пути сигнала особенно важен, ведь перемена места только одного клиента может изменить все пути передачи и нарушить пропускную способность всей сети WLAN. Поэтому каждые 10 мс производится анализ канала.

Для сравнения, однопользовательская MIMO производит анализ только каждые 100 мс. Многопользовательская MIMO может одновременно обслуживать четырех клиентов, при этом каждый клиент может параллельно принимать до четырех потоков данных, что в сумме дает 16 потоков. Для этого многопользовательской MIMO требуются новые WLAN-роутеры, поскольку вырастает потребность в вычислительной мощности.

Одной из самых серьезных проблем многопользовательской MIMO являются интерференции между клиентами. Хотя загруженность канала часто замеряется, этого недостаточно. При необходимости одним фреймам отдается приоритет, а другие, наоборот, придерживаются. Для этого 802.11ac использует различные очереди, которые с разной скоростью производят обработку в зависимости от типа пакета данных, отдавая предпочтение, например, видеопакетам.

Что такое MU-MIMO и что это дает конечному пользователю?

MIMO – технология увеличения спектральной эффективности радиоканала (его пропускной способности и помехоустойчивости), достигается это методом пространственного кодирования сигнала, когда прием и передача данных ведется системами из нескольких антенн на одном канале. Реализовано как пространственное разнесение на приёме, так и пространственное разнесение на передаче. Чтобы МИМО работал нужно многолучевое распространение сигнала. Эта технология широко применяется в беспроводных сетях протокола 802.11ax, ac, n, а также в более старших — LTE и WiMAX.

SU-MIMO и MU-MIMO: в чем различие?

в чем различие SU-MIMO и MU-MIMO

MU-MIMO означает многопользовательский, множественный вход, множественный выход и является беспроводной технологией, поддерживаемой маршрутизаторами и конечными устройствами. MU-MIMO — это следующая эволюция однопользовательского MIMO (SU-MIMO), когда роутер в один момент времени отправляет данные одному клиенту.

Работа многопользовательского МИМО начинается с 802.11ax, 802.11ac Wave2. Старшие стандарты, такие как 802.11b, g и n его не поддерживают. Когда в 2015 году вышел стандарт ac Wave 2, с этой технологией могли работать только маршрутизаторы и точки доступа.

Технология MU-MIMO изнутри

В 2008 году стандарт 802.11n представил технологию multi-in multi-out (MIMO), предназначенную для повышения пропускной способности Wi-Fi между точками доступа и клиентскими устройствами. Чтобы MIMO работал, две беспроводные станции (т.е. и точка доступа, и клиентское устройство) должны иметь несколько антенн, которые идентичны и физически отделены друг от друга фиксированным расстоянием, чтобы отсутствовала разность фаз на рабочей длине волны.

Пространственное мультиплексирование (Spatial Mutiplexing)

Пространственный поток представляет собой набор данных, посланный передающими антеннами, который может быть математически реконструирован на антеннах приемника. В MIMO каждый пространственный поток передается с разных антенн в том же частотном канале, на котором работает передатчик. Рисунок ниже иллюстрирует это для случая с двумя потоками.

Пространственное мультиплексирование

Приемник принимает каждый поток на идентичную радио цепь. Поскольку он знает смещения фазы своих собственных антенн, он может использовать математические методы обработки сигналов для реконструкции исходных потоков. Чтобы повысить пропускную способность нужно увеличивать количество потоков. Каждый пространственный поток содержит набор уникальных данных, а количество независимых пространственных потоков ограничено тем, какое Wi-Fi устройство имеет наименьшее количество радиолиний.

В первой волне 802.11ac пропускная способность повышалась не только за счет использования MIMO, а применялись и другие механизмы:

  • использование большей ширины канала;
  • более сложная схема модуляции и кодирования 256-QAM.

Однако общая ширина полосы в любом частотном диапазоне является «конечной» и это накладывает свои ограничения. Чем шире канал, тем больше он подвержен помехам.

Федеральная комиссия связи ведет работу над открытием большего количества нелицензированного спектра в 5 ГГц для Wi-Fi. Но каналы шириной в 80 и 160 МГц на практике остаются редко достижимыми из-за наличия помех. Чем выше модуляция, тем чище должен быть сигнал. Это означает одно — между точкой доступа и клиентами должен быть действительно хороший сигнал, практически такое возможно только когда они находятся на близких расстояниях в отсутствии помех.

Beamforming (адаптивное формирование диаграммы направленности луча)

Многопользовательский MIMO (MU-MIMO) повышает пропускную способность канала за счет одновременной передачи данных на множество клиентов. Но есть еще другая эффективная технология – формирование диаграммы направленности луча в нисходящем канале – TxBF.

TxBF впервые была представлена в стандарте 802.11n, но широкого распространения не получила. Если в MIMO с каждой антенны отправляются разные пространственные потоки, то при формировании луча с нескольких антенн отправляется один и тот же поток со сдвигом фаз.

Многопользовательский MIMO и формирование луча

Роутер отправляет служебную информацию к клиенту со всех своих антенн, а клиент в обязательном порядке отвечает роутеру матрицей, которая указывает, что он увидел от каждой из антенн. Программное обеспечение маршрутизатора вычисляет примерное местоположение клиента и вносит поправки в работу всех своих передатчиков таким образом, что бы максимизировать сигнал на клиенте.

Например, для устранения замираний на одной из антенн изменяется фазовый сдвиг или увеличивается амплитуда сигнала для прохождения преграды. Если сигнал с разных антенн приходит синфазно и с одинаковой мощностью, он складывается – это понятие называется конструктивной интерференцией. В этом случаем за счет увеличения мощности сигнала возрастает скорость передачи данных и максимальное расстояние до клиента. И наоборот если приходит два сигнал с противоположной фазой они гасятся, и результирующая амплитуда сигнала может быть равна нулю – это называется деструктивной интерференцией радиоволн.

Для формирования диаграммы направленности требуется использование фазированной антенной решетки, в которой имеется множество одинаковых антенн и они разнесены на фиксированное друг от друга расстояние (для работы в противофазе).

Конструктивная и деструктивная интерференция

За счет одновременной передачи данных сразу нескольким клиентам и поддержки множества пространственных потоков MU-MIMO позволяет увеличить канальную скорость в полосе.

Умея контролировать фазовую диаграмму направленности антенны, можно управлять зонами с максимальной конструктивной интерференцией — там, где сигнал является самым сильным, так и зонами с максимальной деструктивные интерференцией — там, где сигнал является самым слабым. А имея матрицу с параметрами сигналов от клиентов и зная их относительное положение, можно создавать шаблон для связи сразу с несколькими клиентами одновременно и независимо.

Схема работы MU-MIMO и матрица с параметрами сигнала

Механизм передачи информации в MU-MIMO

  1. AP передает сигнальный зондирующий кадр;
  2. Каждое MU-MIMO-совместимое клиентское устройство передает назад точке доступа матрицу с данными;
  3. AP вычисляет относительную позицию каждого связанного клиентского устройства;
  4. Точка доступа выбирает группу клиентских устройств для одновременной связи;
  5. AP вычисляет необходимые смещения фазы для каждого потока данных для каждого клиента в группе и передает все потоки данных группе клиентов;
  6. AP отправляет BlockAckRequest каждому клиентскому устройству в группе отдельно, чтобы получить подтверждение того, дошли ли данные до клиентского устройства;
  7. AP получает BlockAck от каждого клиентского устройства в группе, которая успешно получила данные;
  8. Связь установлена и начинается передача данных.

Максимальное количество одновременно работающих клиентов на единицу меньше, чем общее количество доступных потоков роутера. Это математическое ограничение и вот почему. Точка доступа должна контролировать как зоны максимальной конструктивной интерференции для фокусирования самого сильного сигнала на клиентском устройстве, так и зоны максимальной деструктивной интерференции, чтобы минимизировать сигнал на других клиентских устройствах в этой группе.

Математически число переменных превышает число неизвестных, поэтому одним потоком нельзя управлять независимо. Таким образом, для текущего поколения точек доступа 802.11ac Wave 2 с поддержкой MU-MIMO 4×4: 4 допустима следующая комбинация групп:

  • Одно потоковое клиентское устройство 3×3: 3 и одно потоковое клиентское устройство 1×1: 1;
  • Два потоковых клиентских устройства 2×2: 2;
  • Одно потоковое клиентское устройство 2×2: 2 и до двух потоковых клиентских устройств 1×1: 1;
  • До трех потоковых клиентских устройств 1×1: 1.

Совместное использование пространственного мультиплексирования и адаптивного формирования диаграммы направленности луча позволяет:

  1. повысить помехоустойчивость системы (уменьшить вероятность ошибки);
  2. повысить скорость передачи информации в системе;
  3. увеличить зону покрытия;
  4. уменьшить требуемую мощность передатчика.

IoT (Интернет вещей) и MU-MIMO

Стандарт 802.11ax может поддерживать одновременно восемь передач MU-MIMO, по сравнению с четырьмя в 802.11ac. Одновременная поддержка восьми выделенных каналов позволяет большему количеству IoT устройств установить связь с точкой доступа и избежать проблем с пропускной способностью, которые существовали в более ранних версиях Wi-Fi, включая 802.11ac. Это особенно актуально, если в помещении большое количество устройств, обладающих низкой скоростью передачи данных (а это как раз и есть IoT).

Что такое мимо в роутере

У технологии Wi-Fi есть несколько сторон, которые всегда хотелось доработать, чтобы сделать ее более совершенной. Среди них: вопросы безопасности, проблемы распределения трафика между несколькими клиентами, а также скорость передачи данных. Впрочем, что касается последнего, здесь было найдено решение MIMO.

Аббревиатура MIMO (Multiple Input Multiple Output) означает «множественный вход, множественный выход». То есть любую систему, работающую по принципу MIMO, можно рассматривать как многоканальный прибор, совмещающий в себе возможности нескольких одноканальных.

Но следует понимать, что MIMO не является ни технологией, ни стандартом. Термин обозначает лишь идеологию, в рамках которой устройство должно иметь несколько каналов передачи данных, будь то беспроводной роутер или система телевещания. Размышляя о Wi-Fi, можно отметить лишь то, что MIMO станет одной из основополагающих технологий для становления спецификации 802.11n, и те устройства, о которых мы говорим сегодня, можно считать продуктами pre-802.11n (аналогично тому, как мы называем многие решения операторского класса pre-WiMAX и, хотя стандарт еще не утвержден в Институте инженеров по электротехнике и электронике, но уже можно говорить о его перспективах и преимуществах).

Пропускная способность — эволюционное развитие

Развитие беспроводных сетей, доступных для широкого применения, началось со стандарта 802.11b, который был примечателен тем, что почти не зависел от радиопомех, поскольку радиопередача шла в небольшом СВЧ-диапазоне белым шумом. Или, говоря другими словами, сигнал, передаваемый от передатчика к приемнику, проходил сразу по нескольким подканалам (в случае с 802.11b их 11), причем передача каждого бита данных предусматривалась специальным алгоритмом, благодаря которому прием небольшого участка спектра и последующее декодирование «фонового шума» позволяли однозначно восстановить исходную последовательность данных. Этот механизм модуляции получил название метода прямой последовательности (Direct Sequence Spread Spectrum — DSSS). В результате физическая пропускная способность канала для оборудования 802.11b составила порядка 11 Мбит/с, а реальная пропускная способность, которая по вполне понятным причинам не превышает половины физической (по крайней мере, для IP-трафика), ограничивалась 5 Мбит/с в хороших условиях приема. При всей привлекательности данной технологии пропускной способности сети в несколько мегабит в секунду недостаточно, например, для передачи потоковых мультимедиаданных.

Тогда заговорили о появлении новых стандартов, которые впоследствии получили название 802.11a и 802.11g (в порядке появления на рынке). Для нас интереснее второй стандарт, так как он имеет обратную совместимость с устройствами 802.11b, которые до сих пор установлены во многие ноутбуки, роутеры и точки доступа. Кроме того, в нашей стране, увы, пока нельзя использовать частоты в диапазоне 5 МГц без лицензии, в то время как полоса 2,4 ГГц, на которой работают 802.11b и 802.11g, совершенно открыта для частного использования внутри помещений (на сеть, работающую за пределами здания, необходимо соответствующее разрешение отраслевого министерства).

Итак, чем же принципиально отличается стандарт 802.11g? Он использует другой принцип модуляции, более совершенный OFDM (мультиплексирование с ортогональным частотным разделением). Принцип работы такого устройства достаточно прост: в оборудовании устанавливается более мощный математический процессор, он разбивает сигнал на несколько потоков данных, которые одновременно передаются на различных частотах, однако придерживаясь все того же разрешенного законом диапазона. Сама модель ортогонального частотного разделения позволяет избежать перекрестных помех для различных подканалов, что расширяет полосу пропускания во столько раз, сколько независимых каналов используется в системе. Несложный подсчет показывает, что каналов при такой передаче данных оказывается пять.

Но поскольку реальная пропускная способность для устройств 802.11g ограничивалась 20 Мбит/с, требовалось новое решение. У некоторых компаний возникла идея применения технологии Smart Antenna, которая подразумевает использование трех антенн для организации более надежного и стабильного соединения между точкой доступа и клиентским адаптером, что, естественно, приводит к повышению дальности действия сети и небольшому росту реальной пропускной способности в рамках физических характеристик стандарта. И только когда эта методика начала применяться, возник вопрос, как сделать беспроводную сеть в том же диапазоне еще более производительной, добиться повышения пропускной способности, не расширяя частотный спектр (в конце концов, для радиоаппаратуры он не бесконечен).

Технология MIMO

Ответом стала реализация первого чипа с поддержкой кодирования и передачи данных согласно идеологии MIMO от компании Airgo Networks. Надо сказать, эта компания прошла несколько достаточно интересных этапов становления, первым из которых был труд ее сегодняшнего CEO, Грэга Рэлиха (Greg Raleigh). В 17 лет он провел все летние каникулы, разрабатывая технологию, позволяющую увеличить эффективность радиопередач. Кроме этого, одним из идеологов компании стал В. К. Джонс (V. K. Jones), который в свое время вместе с Рэлихом стал основателем фирмы Clarity Wireless, купленной в 1998 году Cisco Systems. Поэтому новое технологическое решение от Airgo Networks выглядит не столь неожиданным — разработчики компании имеют дело с беспроводными технологиями очень давно.

Технология передачи данных, реализованная в чипах Airgo, как и следовало ожидать, снова требует чуть более мощного математического процессора, поскольку на этот раз, кроме модуляции OFDM (она также необходима), чип должен кодировать данные специальным образом: чтобы те могли создать два независимых потока, которые впоследствии могут быть рассмотрены как отдельные каналы Wi-Fi.

Идея заключается в том, что передатчик, равно как и приемник, обладает двумя независимыми антеннами, передающими и принимающими один из потоков данных, закодированных для сети MIMO. Между соответствующими антеннами создается канал, служащий физическим транспортом для одного из потоков данных. Техника Wi-Fi MIMO использует неоднородность помещений и эффекты отражения, что позволяет сделать потоки данных независимыми. Таким образом, в чистом поле MIMO даст гораздо меньше эффекта, чем в офисе, и подобный подход с научной точки зрения следует считать очень конструктивным. Что касается интерпретации данных, благодаря некоторым ухищрениям с модуляцией и более плотной математической обработке кодированных данных как на этапе передачи, так и на этапе приема, становится возможным сохранение практически полной пропускной способности каждого из каналов, интерференция и взаимные помехи для которых решаются посредством все той же технологии Smart Antenna.

Что же, декларация поддержки скорости передачи данных до 108 Мбит/с свидетельствует о том, что в некоторых условиях производитель может добиться использования двух полных каналов по 54 Мбит/с, что, конечно, впечатляет. Психологический же эффект разработки состоит в том, что Wi-Fi стал быстрее проводного Ethernet (по крайней мере, быстрее Fast Ethernet). Пусть речь идет о максимальной пропускной способности, однако в благоприятных условиях беспроводная сеть оказалась быстрее стандартной проводной. И это большой успех.

Перспективы стандарта

Вообще говоря, на данный момент каждый из стандартов 802.11b/g/n обладает обратной совместимостью, и нам остается надеяться, что такой подход в формировании новых спецификаций Wi-Fi Alliance сохранится и в будущем. Совместимость инфраструктуры 802.11b и более старших стандартов понятна — адаптер просто переходит на уровень модуляции DSSS и сбрасывает скорость. Если рассмотреть подробнее проблему использования старых адаптеров в новых сетях, все оказывается гораздо интереснее.

При работе адаптеров 802.11b в условиях точки доступа, поддерживающей стандарт 802.11g, мы получаем лишь один канал, работающий в условиях DSSS, в то время как остальные могут обслуживать клиентов, поддерживающих 802.11g и, следовательно, OFDM-модуляцию. Но что будет, если в окружении MIMO станут использоваться старые адаптеры? Вопрос занимательный, и хотя он будет рассмотрен ниже, следует отметить теоретически повышенную пропускную способность для всего окружения. Почему? Во-первых, технология Smart Antenna позволяет организовать более надежный канал до клиентского адаптера, а во-вторых, эти каналы не должны оказывать друг на друга такое сильное воздействие, как в стандартном g- или b-окружении. Но, вообще говоря, вопрос спорный, и только тесты покажут, как будут обстоять дела в реальности.

Стандарт 802.11n, который должен быть утвержден в следующем году, станет квинтэссенцией нескольких технологий, среди которых должны оказаться как MIMO, так и Smart Antenna, а также Space Time Block Coding или STBC. Но пока стандарт не утвержден, все это остается на уровне слухов и домыслов. Единственное, что можно сказать сегодня, согласно комментариям международного консорциума EWC (Enhanced Wireless Consortium), в рамках нового стандарта будет осуществляться обратная совместимость с сетями и аппаратурой 802.11a/b/g, а максимальная скорость передачи данных будет достигать 600 Мбит/с.

Тестирование

К счастью, оборудование Wi-Fi MIMO уже есть в России, и более того — его можно купить в некоторых розничных сетях. В нашу тестовую лабораторию попали модели от NetGear и D-Link, надо отметить, вполне приличные серийные образцы.

D-Link DI-624M

  • Стандарт 802.11g/b
  • Один порт Ethernet 10/100BASE-TX WAN, четыре порта Ethernet 10/100BASE-TX LAN
  • Антенны: две внутренние всенаправленные (2dBi), две внешние несъемные дипольные (2dBi)
  • Питание: 5В постоянного тока, 3A
  • Источник питания: через внешний адаптер
  • Размеры: 192.118.31 мм

Роутер D-Link DI-624M очень похож на модели, работающие с традиционными сетями Wi-Fi. Разница состоит лишь в том, что антенны сделаны не круглыми, а представляют собой две плоскости и выглядят как два лодочных весла. При этом модель обладает очень удобным и гибким ПО, в котором можно легко выбрать тип сети, включить или отключить поддержку режима MIMO, а также запустить виртуальные серверы или даже вывести для некоторых устройств роутинг таким образом, чтобы они не «ощущали» работы через роутер. Кроме этого, компания D-Link предоставила нам для тестирования PCMCIA-адаптер MIMO для ноутбука (DWL-G650M), который, в отличие от роутера, имеет некоторые проблемы с управляющим ПО, в частности, оно не всегда корректно запускается.

D-Link DWL-G650M

  • Стандарт 802.11g/b
  • Интерфейс 32-бит CardBus
  • Антенны: две внутренние разнесенные переключаемые
  • Поддержка WEP, WPA-PSK

Второй комплект оборудования — от компании NETGEAR, в частности, это RangeMax Wireless Router WPN824, которой оказался куда более интересным дизайнерским решением, чем продукт D-Link, он использует 7 «умных антенн» (Smart Antennas).

NETGEAR WPN824

  • Стандарт 802.11g/b
  • Один порт Ethernet 10/100BASE-TX WAN, четыре порта Ethernet 10/100BaseT
  • 7 встроенных адаптивных антенн
  • Внешний адаптер питания
  • Размеры: 223.30.152 мм

Надо сказать, в процессе тестирования мы не заметили особенного прироста производительности у этого продукта по сравнению с D-Link DI-624M, но выглядит WPN824 более оригинально. Правда у этой оригинальности есть и другая сторона – яркие синие светодиоды несколько раздражают при работе в темноте. Кроме того, этот роутер, напротив, обладает излишне упрощенным ПО, которое вовсе не хочет настраиваться, если не находит внешнего подключения к Интернету (WAN). В остальном функциональность устройства сходна с DI-624M. Адаптеры NETGEAR, предоставленные нам как в формате PCMCIA (WPN511), так и USB 2.0 (WPN111), наоборот отличаются очень удобным ПО, которое позволяет не только адекватно выбирать сеть, но и отслеживать ее производительность.

NETGEAR WPN511

  • Стандарт 802.11g/b
  • Интерфейс 32-бит CardBus
  • Поддержка WEP и WPA-PSK

NETGEAR WPN111

  • Стандарт 802.11g/b
  • Интерфейс USB
  • Поддержка WEP и WPA-PSK

Говоря о MIMO в общем, следует отметить, что для адаптера это означает лишь использование нескольких каналов, если это предлагает сделать роутер, так что никаких настроек для оптимизации сети производить для клиентских устройств не нужно. Все настройки происходят на роутере.

Методология

Тесты происходили в стандартном офисном помещении. Первая часть тестирования сводилась к тому, чтобы продемонстрировать простой прирост скорости в тех же офисных условиях, в которых работало стандартное окружение 802.11g. Так, роутер располагался в серверной комнате, а клиентские устройства за железо-бетонной перегородкой. Вообще говоря, для передачи одиночного потока данных мы не заметили почти никакой разницы между стандартным режимом 802.11g, и SuperG D-Link или RangeMax NetGear. Дело в том, что обычно в случае передачи одного потока данных от роутера к клиентскому устройству, пропускная способность лимитируется самими компьютерами. При подключении еще одного потока передачи данных, который передавался в том же сетевом окружении параллельно (другое устройство также скачивало с сервера файл), разница куда более заметна. Ну а третий случай, когда помимо двух потоков данных в сети был организован обмен двух компьютеров небольшими пакетами (копирование большого массива текстовых файлов), показал еще более разительное преимущество MIMO в процентном соотношении. Для оценки пропускной способности использовалась несложная утилита SpeedTest, которую можно свободно скачать в Интернете. Следует оговориться, что эта утилита оценивает время передачи тестового файла, которое, вследствие известных задержек в протоколе IP и стандартной ОС Windows, конечно, оказывается несколько ниже, но ведь нас интересует реальная способность сетей по передаче файлов, а не нулей и единиц. Впрочем, при передаче очень больших файлов, стандарт 802.11g показал на SpeedTest стандартные для него 20 Мбит/с, потому что погрешности, связанные с началом отсчета и окончанием были не столь велики на фоне 1 Гбайт. Однако нам не каждый раз приходится передавать такие файлы, и поэтому задержки в действительности играют большую роль, что и отражает наше тестирование. Поэтому в качестве тестового файла для передачи данных был выбран мультфильм, сжатый кодеком DivX до 50 Мбайт. Также следует отметить, что полученный выигрыш при наличии двух потоков данных, следует умножить на два, так как второй поток данных, естественно, тоже становился быстрее при использовании MIMO.

Скорость: MIMO vs 802.11g

Как вы можете видеть, применение MIMO значительно увеличивает пропускную способность сети, причем это наблюдается, даже если в сетевом окружении используются адаптеры 802.11g, собственно говоря, для двух потоков данных, каждый из них преимущественно работал именно в режиме 802.11g, но зато на максимальной скорости. И чем больше в беспроводной сети устройств, тем больше наблюдается скоростных преимуществ от использования MIMO.

Дальность работы

Поднимая вопрос об увеличении дальности работы сети, не станем отрицать ее наличие, но замерять ее достаточно точно не представляется возможным, так как офисное окружение может быть различным. Тем не менее, по субъективным данным, она возрастает в 1,5–2 раза. При этом наличие сложно проходимых объектов на пути сети создает некоторые проблемы со скоростью, которые, как мы обнаружили, для роутеров MIMO оказались более ощутимыми. В частности, вторая диаграмма, отвечающая за работу за железной дверью, которая находится на входе в наш офис, показала, что сеть MIMO имеет меньшую пропускную способность, зато дольше сохраняет хотя бы какую-то возможность доступа.

Дальность: MIMO vs 802.11g

Заключение

Технология MIMO оказалась весьма интересной, и хотя еще любопытнее будет тестировать адаптеры грядущего стандарта 802.11n, решения на базе чипсетов Airgo уже сегодня позволяют достичь высоких показателей скорости и дальности работы сети. При этом использование MIMO идет на пользу большим беспроводным сетям и позволяет увеличить скорость передачи не только для двух компьютеров, но для сети в целом, оптимизируя трафик, и передавая его по разным каналам. И, что приятно, их цены не так высоки — стоимость роутеров обоих производителей составляет порядка $150, клиентских адаптеров — около $80 (для карт в формате PCMCIA).

За предоставленное оборудование редакция журнала «Экспресс-Электроника» благодарит московское представительство компании D-Link и корпорацию ЮНИ.

Поддержка MIMO в роутере что это

Беспроводной маршрутизатор D-Link DI-634M с поддержкой технологии 108G MIMO позиционируется как устройство для построения высокоскоростных беспроводных сетей с расширенным радиусом действия. В нем использована технология Smart Antenna MIMO, позволяющая, по заявлению производителя, в 8 раз увеличить дальность передачи беспроводного сигнала. Поддержка этой технологии и скорости беспроводного соединения до 108 Mbps предполагает увеличение эффективности работы приложений, требовательных к полосе пропускания, таких как потоковые аудио и видео и сетевые игры во WLAN.

Другие функциональные возможности шлюза в сравнении с популярным интернет-маршрутизатором DI-624 практически не изменились – благодаря встроенному 4-портовому коммутатору он также позволяет объединять несколько устройств в локальную сеть и организовать доступ к Сети через WAN-порт, взаимодействуя с кабельным или xDSL-модемом. При этом вопросы проводной сетевой безопасности решаются благодаря поддержке NAT и возможности включения межсетевого экрана с функцией Stateful. Допускается одновременная работа пакетного инспектора SPI и механизма управления доступом в Интернет («родительский контроль») с ведением подробного журнала системных событий. Маршрутизатор оснащен статическим DHCP и позволяет организовывать VPN-соединение в режиме pass-through. Беспроводной сегмент дополнительно защищен благодаря поддержке двух стандартов шифрования WEP и WPA-Personal (WPA-PSK), а также аутентификации пользователей по 802.1x. Можно также установить правила фильтрации на основе адресной информации – по МАС- и IP-адресам пакетов. Кроме того, возможен «невидимый» режим работы, при котором сетевой SSID широковещательно в эфир не передается.

Говоря о законченности MIMO-решения, разработчик утверждает, что наилучшие результаты достигаются на основе совместного использования беспроводных маршрутизаторов в сочетании с адаптерами, также поддерживающими технологии 108G MIMO. Для этого в тест был включен единственный на данный момент прибывший в Украину экземпляр MIMO-адаптера от этой компании – DWL-G650M. Как и маршрутизатор, он, по заверению производителя, выполнен по схеме «два приемника × два передатчика» на базе того же MIMO-чипсета Atheros – AR5005. Внешний вид этой 32-битовой PCMCIA-карточки практически ничем не отличается от обычной DWL-G650, равно как и перечень их возможностей: тот же диапазон мощностей передатчиков, та же функциональность по обеспечению безопасности, реализованы те же (кроме, разумеется, MIMO) фирменные технологии ускорения и расширения зоны покрытия.

Преимущества MU-MIMO

Это захватывающая технология, поскольку она оказывает заметное влияние на повседневное использование Wi-Fi без прямого изменения пропускной способности или других ключевых параметров беспроводного соединения. Сети становятся намного эффективнее.

Для обеспечения стабильного соединения с ноутбуком, телефоном, планшетом или компьютером стандарт не требует наличия у маршрутизатора нескольких антенн. Каждое такое устройство может не делиться своим каналом MIMO с другими. Это особенно заметно при потоковой передаче видео или выполнении других сложных задач. Скорость работы в Интернете субъективно повышается, и соединение устанавливается надежнее, хотя на самом деле становится более разумной организация сети. Также повышается число одновременно обслуживаемых устройств.

MU-MIMO поддерживает ограниченное количество одновременных потоков и устройств

К огромному сожалению, маршрутизаторы или точки доступа с реализованной технологией MU-MIMO не могут одновременно обслуживать неограниченное количество потоков и устройств. Маршрутизатор или точка доступа имеют собственное ограничение на число потоков, которые они обслуживают (зачастую это 2, 3 или 4 потока), и это количество пространственных потоков также ограничивает количество устройств, которые точка доступа может одновременно обслужить. Так, точка доступа с поддержкой четырех потоков может одновременно обслуживать четыре различных устройства, либо, к примеру, один поток направить к одному устройству, а три других потока агрегировать на другое устройство (увеличив скорость от объёединения каналов).​

От пользовательских устройств не требуется наличие нескольких антенн

Как и в случае с технологией SU-MIMO, только беспроводные устройства со встроенной поддержкой MU-MIMO могут агрегировать потоки (скорость). Но, в отличие от ситуации с технологией SU-MIMO, беспроводным устройствам не обязательно требуется иметь несколько антенн, чтобы принимать MU-MIMO-потоки от беспроводных маршрутизаторов и точек доступа. Если беспроводное устройство оснащено только одной антенной, оно может принять
только один MU-MIMO-поток данных от точки доступа, используя beamforming для улучшения приёма.

Большее количество антенн позволит беспроводному пользовательскому устройству принимать большее количество потоков данных одновременно (обычно из расчета один поток на одну антенну), что, безусловно, положительно скажется на производительности этого устройства. Однако, наличие нескольких антенн у пользовательского устройства негативно сказывается на потребляемой мощности и размере этого изделия, что критично для смартфонов.

Однако технология MU-MIMO предъявляет меньшие аппаратные требования к клиентским устройствам, чем обременительная в техническом плане технология SU-MIMO, то можно с уверенностью предположить, что производители гораздо охотнее станут оснащать свои
ноутбуки и планшеты поддержкой технологии MU-MIMO.​

Принцип работы MIMO

Как уже отмечалось выше, для организации технологии MIMO необходима установка нескольких антенн на передающей и на приемной стороне. Обычно устанавливается равное число антенн на входе и выходе системы, т.к. в этом случае достигается максимальная скорость передачи данных. Чтобы показать число антенн на приеме и передаче вместе с названием технологии «MIMO» обычно упоминается обозначение «AxB», где A – число антенн на входе системы, а B – на выходе. Под системой в данном случае понимается радио соединение.

Для работы технологии MIMO необходимы некоторые изменения в структуре передатчика по сравнению с обычными системами. Рассмотрим лишь один из возможных, наиболее простых, способов организации технологии MIMO. В первую очередь, на передающей стороне необходим делитель потоков, который будет разделять данные, предназначенные для передачи на несколько низкоскоростных подпотоков, число которых зависит от числа антенн. Например, для MIMO 4х4 и скорости поступления входных данных 200 Мбит/сек делитель будет создавать 4 потока по 50 Мбит/сек каждый. Далее каждый их данных потоков должен быть передан через свою антенну. Обычно, антенны на передаче устанавливаются с некоторым пространственным разнесением, чтобы обеспечить как можно большее число побочных сигналов, которые возникают в результате переотражений. В одном из возможных способов организации технологии MIMO сигнал передается от каждой антенны с различной поляризацией, что позволяет идентифицировать его при приеме. Однако в простейшем случае каждый из передаваемых сигналов оказывается промаркированным самой средой передачи (задержкой во времени, затуханием и другими искажениями).

На приемной стороне несколько антенн принимают сигнал из радиоэфира. Причем антенны на приемной стороне также устанавливаются с некоторым пространственным разнесением, за счет чего обеспечивается разнесенный прием, обсуждавшийся ранее. Принятые сигналы поступают на приемники, число которых соответствует числу антенн и трактов передачи. Причем на каждый из приемников поступают сигналы от всех антенн системы. Каждый из таких сумматоров выделяет из общего потока энергию сигнала только того тракта, за который он отвечает. Делает он это либо по какому-либо заранее предусмотренному признаку, которым был снабжен каждый из сигналов, либо благодаря анализу задержки, затухания, сдвига фазы, т.е. набору искажений или «отпечатку» среды распространения. В зависимости от принципа работы системы (Bell Laboratories Layered Space-Time — BLAST, Selective Per Antenna Rate Control (SPARC) и т.д.), передаваемый сигнал может повторяться через определенное время, либо передаваться с небольшой задержкой через другие антенны.

Принцип организации технологии MIMO

В системе с технологией MIMO может возникнуть необычное явление, которое заключается в том, что скорость передачи данных в системе MIMO может снизиться в случае появления прямой видимости между источником и приемником сигнала. Это обусловлено в первую очередь уменьшением выраженности искажений окружающего пространства, который маркирует каждый из сигналов. В результате на приемной стороне становится проблематичным разделить сигналы, и они начинают оказывать влияние друг на друга. Таким образом, чем выше качество радио соединения, тем меньше преимуществ можно получить от MIMO.

Технология AirMAX

Компания Ubiquiti Networks является признанным лидером разработки и реализации инновационных технологий WiFi, в том числе и MIMO. Именно на ее основе Ubiquiti была разработана и запатентована технология AirMAX
. Суть ее в том, что прием-передача сигнала несколькими антеннами на одном канале упорядочивается и структурируется протоколом TDMA с аппаратным ускорением: пакеты данных разнесены в отдельные временные слоты, очереди передачи координируются.

Это позволяет расширить пропускную способность канала, увеличить количество подключаемых абонентов без потери качества связи

Данное решение эффективно, удобно в использовании и, что немаловажно — недорого. В отличие от аналогичного оборудования, используемого в WiMAX — сетях, оборудование от Ubiquiti Networks с технологией AirMAX приятно радует ценами

Одно из самых существенных и важных нововведений
Wi-Fi за прошедшие 20 лет — технология Multi User — Multiple Input Multiple Output (MU-MIMO). MU-MIMO расширяет функциональность появившегося недавно обновления беспроводного стандарта 802.11ac «Wave 2». Безусловно, это огромный прорыв для беспроводной связи. Данная технология помогает увеличить максимальную теоретическую скорость беспроводного соединения от 3,47 Гбит/с в оригинальной спецификации стандарта 802.11ac до 6,93 Гбит/с в обновлении стандарта 802.11ac Wave 2. Это одна из самых сложных функциональностей Wi-Fi на сегодняшний день.

Давайте разберемся как это работает!

Технология MU-MIMO повышает планку за счет разрешения нескольким устройствам принимать несколько потоков данных.
Она базируется на однопользовательской технологии MIMO (SU-MIMO), которая была представлена почти 10 лет назад со стандартом 802.11n.

SU-MIMO увеличивает скорость Wi-Fi-соединения, позволяя паре беспроводных устройств одновременно принимать или отправлять несколько потоков данных.

Рисунок 1. Технология SU-MIMO предоставляет многоканальные входные и выходные потоки одному устройству в одно и то же время. Технология MU-MIMO обеспечивает одновременную связь с несколькими устройствами.

По сути, революционные изменения для Wi-Fi обеспечивают две технологии. Первая из этих технологий, называемая beamforming, позволяет Wi-Fi-маршрутизаторам и точкам доступа более эффективно использовать радиоканалы. До появления этой технологии Wi-Fi-маршрутизаторы и точки доступа работали как электрические лампочки, посылая сигнал во всех направлениях. Проблема заключалась в том, что
несфокусированному сигналу ограниченной мощности трудно добраться до клиентских Wi-Fi-устройств.

С помощью технологии beamforming Wi-Fi-маршрутизатор или точка доступа обменивается с клиентским устройством информацией о своем местоположении. Затем маршрутизатор изменяет свою фазу и мощность для формирования лучшего сигнала. Как результат: более эффективно используются радиосигналы, ускоряется передача данных и, возможно, увеличивается максимальная дистанция соединения.

Возможности beamforming расширяются. До сих пор Wi-Fi-маршрутизаторы или точки доступа были по своей сути однозадачными, посылая или принимая данные только от одного клиентского устройства одновременно. В более ранних версиях семейства стандартов беспроводной передачи данных 802.11, включая стандарт 802.11n и первую версию стандарта 802.11ac, существовала возможность одновременного приема или передачи нескольких потоков данных, но до сих пор не существовало метода, позволяющего Wi-Fi-маршрутизатору или точке доступа в одно и то же время «общаться» сразу с несколькими клиентами. Отныне же с помощью MU-MIMO такая возможность появилась.

Это действительно большой прорыв, так как возможность одновременной передачи данных сразу нескольким клиентским устройствам значительно расширяет доступную полосу пропускания для беспроводных клиентов. Технология MU-MIMO продвигает беспроводные сети от старого способа
CSMA-SD, когда в одно и то же время обслуживалось только одно устройство, к системе, где сразу несколько устройств могут одновременно «говорить». Для большей наглядности примера, представьте себе переход от однополосной проселочной дороги к широкой автомагистрали

Сегодня
беспроводные маршрутизаторы и точки доступа второго поколения стандарта 802.11ac Wave 2 активно завоевывают рынок. Каждый, кто разворачивает Wi-Fi понимать специфику работы технологии MU-MIMO. Предлагаем вашему вниманию 13 фактов, которые ускорит ваше обучение в этом направлении.

Massive MIMO

По мере продвижения в сторону беспроводных сетей пятого поколения (5G) рост числа смартфонов и новых применений привел к 100-кратному увеличению их требуемой пропускной способности по сравнению с LTE. Новая технология Massive MIMO, которой в последние годы уделяется много внимания, призвана значительно увеличить показатели эффективности телекоммуникационных сетей до беспрецедентных уровней. При дефиците и дороговизне доступных ресурсов операторов привлекает возможность увеличить пропускную способность в полосах частот ниже 6 ГГц.

Несмотря на значительный прогресс, Massive MIMO далек от совершенства. Технология по-прежнему активно исследуется как в академических кругах, так и в промышленности, где инженеры стремятся достичь теоретических результатов с помощью коммерчески приемлемых решений.

Massive MIMO может помочь в решении двух ключевых проблем — пропускной способности и охвата. Для операторов мобильной связи частотный диапазон остается дефицитным и относительно дорогостоящим ресурсом, но является ключевым условием для повышения скорости передачи сигнала. В городах интервал между базовыми станциями обусловлен пропускной способностью, а не охватом, что требует развертывания большого их количества и приводит к дополнительным расходам. Massive MIMO позволяет увеличить емкость уже существующей сети. В областях, где развертывание базовых станций обусловлено охватом, технология позволяет увеличить радиус их действия.

MIMO и WiFi

С ростом популярности беспроводной передачи данных по WiFi соединениям, конечно же, возросли требования к их скорости. И именно технология MIMO и другие разработки, взявшие ее за основу, позволили увеличить пропускную способность в несколько раз. Развитие WiFi идет по пути развития стандартов 802.11 — a, b, g, n и так далее. Мы не зря упомянули возникновение стандарта 802.11n. Multiple Input Multiple Output — его ключевой компонент, позволивший увеличить канальную скорость беспроводного соединения с 54 Мбит/сек до более 300 Мбит/сек.

Стандарт 802.11n позволяет применять как стандартную ширину канала в 20 МГц, так и использовать широкополосную линию в 40 МГц с более высокими показателями пропускной способности. Как уже упоминалось выше, сигнал многократно отражается, тем самым используя множество потоков на одном канале связи.

Благодаря этому доступ в интернет на основе WiFi теперь позволяет не только серфинг, проверку почты и общение в аське, но и онлайн-игры, онлайн-видео, общение в скайпе и прочий «тяжелый» трафик.

Более новый стандарт — также использует технологию MIMO.

Применение MIMO

Технология MIMO в последнее десятилетие является одним из самых актуальных способов увеличения пропускной способности и емкости беспроводных систем связи. Рассмотрим некоторые примеры использования MIMO в различных системах связи.

Стандарт WiFi 802.11n – один из наиболее ярких примеров использования технологии MIMO. Согласно ему он позволяет поддерживать скорость до 300 Мбит/сек. Причем предыдущий стандарт 802.11g позволял предоставлять лишь 50 Мбит/сек. Кроме увеличения скорости передачи данных, новый стандарт благодаря MIMO также позволяет обеспечить лучшие характеристики качества обслуживания в местах с низким уровнем сигнала. 802.11n используется не только в системах точка/многоточка (Point/Multipoint) – наиболее привычной нише использования технологии WiFi для организации LAN (Local Area Network), но и для организации соединений типа точка/точка которые используются для организации магистральных каналов связи со скоростью несколько сотен Мбит/сек и позволяющих передавать данные на десятки километров (до 50 км).

Стандарт WiMAX также имеет два релиза, которые раскрывают новые возможности перед пользователями с помощью технологии MIMO. Первый – 802.16e – предоставляет услуги мобильного широкополосного доступа. Он позволяет передавать информацию со скоростью до 40 Мбит/сек в направлении от базовой станции к абонентскому оборудованию. Однако MIMO в 802.16e рассматривается как опция и используется в простейшей конфигурации – 2х2. В следующем релизе 802.16m MIMO рассматривается как обязательная технология, с возможной конфигурацией 4х4. В данном случае WiMAX уже можно отнести к сотовым системам связи, а именно четвертому их поколению (за счет высокой скорости передачи данных), т.к. обладает рядом присущих сотовым сетям признаков: роуминг, хэндовер, голосовые соединения. В случае мобильного использования, теоретически, может быть достигнута скорость 100 Мбит/сек. В фиксированном исполнении скорость может достигать 1 Гбит/сек.

Наибольший интерес представляет использование технологии MIMO в системах сотовой связи. Данная технология находит свое применение, начиная с третьего поколения систем сотовой связи. Например, в стандартеUMTS, в Rel. 6 она используется совместно с технологией HSPA с поддержкой скоростей до 20 Мбит/сек, а в Rel. 7 – с HSPA+, где скорости передачи данных достигают 40 Мбит/сек. Однако в системах 3G MIMO так и не нашла широкого применения.

Системы 4G, а именно LTE, также предусматривают использование MIMO в конфигурации до 8х8. Это в теории может дать возможность передавать данные от базовой станции к абоненту свыше 300 Мбит/сек. Также важным положительным моментом является устойчивое качество соединения даже на краю соты. При этом даже на значительном удалении от базовой станции, или при нахождении в глухом помещении будет наблюдаться лишь незначительное снижение скорости передачи данных.

Таким образом, технология MIMO находит применение практически во всех системах беспроводной передачи данных. Причем потенциал ее не исчерпан. Уже сейчас разрабатываются новые варианты конфигурации антенн, вплоть до 64х64 MIMO. Это в будущем позволит добиться еще больших скоростей передачи данных, емкости сети и спектральной эффективности.

Что представляет собой технология MIMO

Если дать как можно более простое определение, то MIMO — это многопотоковая передача данных
. Аббревиатуру можно перевести с английского как «несколько входов, несколько выходов» В отличие от предшественника (SingleInput/SingleOutput), в устройствах с поддержкой MIMO сигнал транслируется на одном радиоканале с помощью не одного, а нескольких приемников и передатчиков. При обозначении технических характеристик устройств WiFi рядом с аббревиатурой указывают их количество. Например, 3х2 — это 3 передатчика сигнала и 2 принимающих антенны.

Кроме того, в MIMO используется пространственное мультиплексирование
. За устрашающим названием кроется технология одновременной передачи нескольких пакетов данных по одному каналу. Благодаря такому «уплотнению» канала его пропускную способность можно увеличить в два раза и более.

Multi-user MIMO MU-MIMO

Рассмотренный выше принцип организации радиосвязи относится к так называемой Single user MIMO (SU-MIMO), где существует лишь один передатчик и приемник информации. В этом случае и передатчик и приемник могут четко согласовать свои действия, и в то же время нет фактора неожиданности, когда в эфире могут появиться новые пользователи. Такая схема вполне подходит для небольших систем, например для организации связи в доме офисе между двумя устройствами. В свою очередь большинство систем, такие как WI-FI, WIMAX, сотовые системы связи являются многопользовательскими, т.е. в них существует единый центр и несколько удаленных объектов, с каждым из которых необходимо организовать радиосоединение. Таким образом, возникают две проблемы: с одной стороны базовая станция должна передать сигнал ко многим абонентам через одну и ту же антенную система (MIMO broadcast), и в то же время принять сигнал через те же антенны от нескольких абонентов (MIMO MAC – Multiple Access Channels).

В направлении uplink – от MS к BTS, пользователи передает свою информацию одновременно на одной и той же частоте. В данном случае для базовой станции возникает сложность: необходимо разделить сигналы от различных абонентов. Одним из возможных способов борьбы с этой проблемой также является способ линейной обработки (linear processing), который предусматривает предварительную кодировку передаваемого сигнала. Исходный сигнал, согласно этому способу, перемножается с матрицей, которая составляется из коэффициентов отражающих интерференционное воздействие от других абонентов. Матрица составляется исходя из текущей обстановки в радиоэфире: числа абонентов, скоростей передачи и т.п. Таким образом, перед передачей сигнал подвергается искажению обратному с тем, которое он встретит во время передачи в радиоэфире.

В downlink – направление от BTS к MS, базовая станция передает сигналы одновременно на одном и том же канале сразу к нескольким абонентам. Это приводит к тому, что сигнал, передаваемый для одного абонента, оказывает влияние на прием всех других сигналов, т.е. возникает интерференция. Возможными вариантами борьбы с этой проблемой является использование Smart Antena, либо применение технологии кодирования dirty paper («грязная бумага»). Рассмотрим технологию dirty paper подробнее. Принцип ее действия основан на анализе текущего состояния радиоэфира и числа активных абонентов. Единственный (первый) абонент передает свои данные к базовой станции без кодирования, изменения своих данных, т.к. интерференции от других абонентов нет. Второй абонент будет кодировать, т.е. изменять энергию своего сигнала так чтобы не помешать первому и не подвергнуть свой сигнал влиянию от первого. Последующие абоненты, добавляемые в систему, также будут следовать этому принципу, и опираться на число активных абонентов и эффект, оказываемый передаваемыми ими сигналами.

11ac beamforming и MU-MIMO

Posted by Stanislav
on 08/05/2015

Beamforming

Нет второй такой технологии в WiFi, вокруг которой не крутилось бы столько мифов, FUDa и обычного человеческого непонимания. Чего только не приходилось слышать на различных конференциях, от партнеров и заказчиков. И то, что beamforming магически увеличивает мощность передатчика и то, что точка доступа механически направляет антенну в сторону клиента.

Технология beamforming постороена на эффекте интерференции волн, когда две волны находящиеся в одной фазе накладываются друг на друга тем самым увеличивая амплитуду.

Beamforming использует эффект наложения волн для того, чтобы направить электромагнитное излучение в сторону пользователя, вместо того, чтобы распростронять его во все стороны в случае всенаправленной антенны. Не вдаваясь в технические подробности и формулы эффект об beamforming-a хорошо иллюстрируют два камня, брошенные в воду близко друг к другу. В каком-то месте волны будут гасить друг друга, а где-то усиливать. В результате чего улучшаются производительность беспроводной сети.

Beamforming не требует чтобы клиент находился в зоне прямой видимости от точки доступа. Через механизм, носящий название sounding точка доступа и клиент обмениваются информацией о состоянии среды через NDP (Null Data Packet) и NDPA (NDP Announcement). Устройство beamformer отправляет анонс NDPA с информацией о том, кому этот ананос назначается. Дальше beamformer отправляет NDP и ожидает в ответ услышать отчет от устройства. На основании этого отчета будут высчитываться необходимые фазы колебаний с тем и необходимые антенны, чтобы создать в точке принимающего устройства максимум.

И, наконец, копцепция beamforming лежит в основе другой технологии 802.11ac – MU-MIMO.

MU-MIMO

MU-MIMO использует принцип пространтсвенного мультиплексирования. Если в случае с классическим MIMO у нас стояла задача отправить несколько независимых потоков данные через несколько антенн по направлению к приемнику, то в случае с 802.11ac MU-MIMO позволяет нам отправлять несколько потоков с данными к нескольким устройствам. Тем самым более эффективно расходуется эфирное время и полоса пропускания.

Одна точка доступа в один момент времени может передавать данные нескольким клиентам или получать данные от одного. По этому некоторые вендоры добавляют, что технология только downlink (DL MU-MIMO).

Планирование беспроводной сети

Еще одним популярным заблуждением является то, что чем больше скорость работы беспроводной сети, тем меньше будет расстояние на котором сможет клиент подключиться к точке доступа. На деле при планировании 802.11ac беспроводной сети вам не нужно отходить от тех же правил, которыми вы пользовались при планировании 802.11n сетей, работающих в 5GHz диапазоне. При этом beamforming и другие технологии не оказывают существенного влияния на парадигму планирования такой сети и отталкиваться в первую очередь следует от типа приложения (Voice, Video, Data, Web), а так же RSSI & SNR.

Проблем с POE так же не будет. Новые чипы выпускаются по более тонким нормам, обеспечивая более низкое энергопотребление.

Ну а про необходимость обновлять уровень доступа мы уже с вами поговорили – http://twistedminds.ru/2015/05/802-11ac-vs-gigabit/

← 802.11ac: обратная совместимость, динамическое распределение каналов
Радары и опасные зоны для SMEG+ →

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *