Уровень Ферми в полупроводниках
Понятия энергии Ферми и уровня Ферми были введены ранее для металлов. В полупроводниках функция распределения электронов по состояниям имеет тот же вид, что и в металлах. Энергия Ферми в полупроводниках имеет тот же физический смысл: энергия Ферми — это максимально допустимая энергия, ниже которой при нулевой абсолютной температуре все энергетические уровни заняты [f(E)= 1], а выше которой все уровни пусты [f(E) = 0]. Для полупроводников, у которых при абсолютном нуле валентная зона полностью заполнена, а зона проводимости совершенно свободна, функция распределения имеет разрыв. Следовательно, уровень Ферми в полупроводнике должен лежать при абсолютном нуле в запрещенной зоне.
Уровень Ферми в собственном полупроводнике
Для собственного полупроводника концентрации электронов и дырок равны (), т.к. каждый электрон, покинувший валентную зону, создает одну дырку. Приравнивая равенства (17) и (19), получим
Разрешая последнее равенство относительно ЕF, получим
Если эффективные массы электронов и дырок равны [= ,то = 0] и уровень Ферми собственного полупроводника при любой температуре располагается посередине запрещенной зоны.
Температурная зависимость положения уровня Ферми в собственном полупроводнике определяется третьим слагаемым в уравнении (23). Если эффективная масса дырки в валентной зоне больше эффективной массы электрона в зоне проводимости, то уровень Ферми смещается с повышением температуры ближе к дну зоны проводимости. В противоположном случае уровень Ферми смещается к потолку валентной зоны. Положение уровня Ферми в собственном полупроводнике с изменением температуры схематически показано на рис. 5.
Для большинства полупроводников эффективная масса дырки не намного превышает эффективную массу электрона и смещение уровня Ферми с изменением температуры незначительно. Однако у антимонида индия (InSb) , а ширина запрещенной зоны невелика (Eg = 0,17 эВ), так что при Т > 450K уровень Ферми входит в зону проводимости. При этой температуре полупроводник переходит в вырожденное состояние.
Рис. 5. Зависимость уровня Ферми от температуры в собственном полупроводнике при различных соотношениях эффективных масс электронов и дырок.
1 — ; 2 — ; 3 — .
Уровень Ферми в примесных полупроводниках
Положение уровня Ферми в примесных полупроводниках может быть найдено из условия электронейтральности кристалла. Для донорного полупроводника это условие записывается в виде
здесь Nd— концентрация донорных уровней,nd— концентрация электронов на донорных уровнях. Концентрация электронов в зоне проводимости равна сумме концентраций дырок в валентной зоне и концентрации положительно заряженных ионов доноров (последняя, очевидно, равнаNd—nd).
Концентрацию электронов на донорных уровнях можно вычислить, умножив концентрацию этих уровней Nd на функцию распределения Ферми-Дирака:
где Еd— энергия активации донорных уровней.
Подстановка в условие электронейтральности (24) концентраций электронов (17) и дырок (19), а также концентрации электронов на донорных уровнях (25) приводит к следующему уравнению относительно положения уровня Ферми ЕF :
При подстановке концентрации электронов на донорных уровнях в уравнение (24) было сделано предположение, что газ электронов примесных атомов невырожденный, что позволило пренебречь единицей в знаменателе формулы (25).
Уравнение (26) ввиду его сложности обычно в общем виде не решают, а ограничиваются рассмотрением частных случаев. Например, при низких температурах, когда электроны в зоне проводимости появляются в основном за счет переходов с примесных уровней, а концентрация дырок близка к нулю, решение уравнения (26) имеет вид
Рисунок 6 Температурные зависимости положения уровня Ферми в донорном (а) и акцепторном (б) полупроводниках.
Из уравнения (27) следует, что при абсолютном нуле температуры энергия Ферми донорного полупроводника находится строго посередине между дном зоны проводимости и донорными уровнями. Температурная зависимость положения уровня Ферми определяется третьим членом в уравнении (27), который меняет знак с изменением температуры. Поэтому уровень Ферми с повышением температуры сначала смещается к зоне проводимости, а затем — к валентной зоне (рис. 6а).
Аналогично можно получить выражение для температурной зависимости уровня Ферми в акцепторном полупроводнике. График этой зависимости схематически приведен на рис. 6б.
Уровень Ферми
В физике, энергия Ферми ( EF ) системы невзаимодействующих фермионов — это увеличение энергии основного состояния системы при добавлении одной частицы. Это эквивалентно химическому потенциалу системы в ее основном состоянии при абсолютном нуле температур. Это может также интерпретироваться как максимальная энергия фермиона в основном состоянии. Энергия Ферми — одно из центральных понятий физики твёрдого тела.
Фермионы — частицы с полуцелым спином, обычно 1/2, такие как электроны — подчиняются принципу запрета Паули, согласно которому две одинаковые частицы не могут занимать одно и то же квантовое состояние. Следовательно, фермионы подчиняются статистике Ферми — Дирака. Основное состояние невзаимодействующих фермионов строится начиная с пустой системы и постепенного добавления частиц по одной, последовательно заполняя состояния в порядке возрастания энергии. Когда необходимое число частиц достигнуто, энергия Ферми равна энергии самого высокого заполненного состояния (или самого низкого незанятого состояния; различие не важно, когда система является макроскопической). Поэтому энергию Ферми называют также уровнем Ферми. Частицы с энергией равной энергии Ферми двигаются со скоростью называемой скоростью Ферми.
В свободном электронном газе (квантовомеханическая версия идеального газа фермионов) квантовые состояния могут быть помечены согласно их импульсу. Кое-что подобное можно сделать для периодических систем, типа электронов движущихся в атомной решётке металла, используя так называемый квазиимпульс (Частица в периодическом потенциале). В любом случае, состояния с энергией Ферми расположены на поверхности в пространстве импульсов, известной как поверхность Ферми. Для свободного электронного газа, поверхность Ферми — поверхность сферы; для периодических систем, она вообще имеет искаженную форму. Объем заключённый под поверхностью Ферми определяет число электронов в системе, и её топология непосредственно связана с транспортными свойствами металлов, например, электрической проводимостью. Поверхности Ферми большинства металлов хорошо изучены экспериментально и теоретически.
Уровень Ферми при положительных температурах
При положительной температуре ферми-газ не будет являться вырожденным, и населённость уровней будет плавно уменьшаться от нижних уровней к верхним. В качестве уровня Ферми можно выбрать уровень, заполненный ровно наполовину (то есть вероятность находящегося на искомом уровне состояния быть заполненным частицей должна быть равна 1/2).
Энергия Ферми свободного ферми-газа связана с химическим потенциалом уравнением
Эта вероятность описывается функцией распределения Ферми–Дирака
в которой ЕF — энергия Ферми (или уровень Ферми), наименьшая энергия, необходимая для возбуждения одной частицы и перехода ее в зону проводимости. За начало отсчета энергии удобно выбрать (в энергетической диаграмме кристалла) нулевое значение.
а). Если в полупроводнике электрон "перебрасывается" с верхнего уровня валентной зоны на нижний уровень зоны проводимости, на это затрачивается энергия, равная ΔЕg (ширине запрещенной зоны). У чистого полупроводника при переходе электрона в зону проводимости в валентной зоне появляется другой носитель тока — дырка, т.е. на образование одного носителя тока необходима энергия ΔЕg/2. Следовательно, уровень Ферми чистого полупроводника расположен в центре запрещенной зоны (рис.7а).
б). Если вблизи нижнего края зоны проводимости расположены заполненные уровни примесных атомов (донорные уровни), то при сообщении электронам, находящимся на этих уровнях энергии ΔЕ1<<ΔЕg (рис.6а), эти электроны переходят в зону проводимости.
Энергия Ферми представляет собой среднюю энергию возбуждения электронов, "перебрасываемых" в зону проводимости. При абсолютном нуле и вблизи него уровень Ферми полупроводников-доноров расположен вблизи донорных уровней, т.к. в этой области температур переходы электронов через всю запрещенную зону (с верхнего уровня валентной зоны в зону проводимости) маловероятны.
Однако, с увеличением температуры вещества увеличивается число электронов, переходящих через всю запрещенную зону в зону проводимости, благодаря тепловому хаотическому движению и тепловым флуктуациям.
При каждом из таких переходов образуются два носителя тока (электрон и дырка). Следовательно, для образования одного носителя тока необходима энергия ΔЕg/2. Уровень Ферми перемещается (опускается) из области донорных уровней к своему предельному положению – в центр полосы запрещенных энергий (рис.7б).
в). В акцепторных полупроводниках при абсолютном нуле и вблизи него уровни Ферми расположены вблизи акцепторных уровней (у верхней границы валентной зоны). С увеличением температуры увеличивается число электронов, переходящих через всю запрещенную зону в зону проводимости, и уровень Ферми перемещается (поднимается), стремясь, как и в донорных полупроводниках, к своему предельному положению – в центр запрещенной зоны (рис.7в).
IV. ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ЭЛЕКТРОПРОВОДНОСТИ.
1. Металлы. Удельная электропроводность металла σ, полученная в электродинамике при выводе закона Ома в дифференциальной форме j = σ Е на основе классической электропроводности, выражается формулой
где n — концентрация "свободных электронов", <λ> — их средняя длина свободного пробега, <ur> — средняя арифметическая скорость теплового хаотического движения.
В металле n и <λ> практически не зависят от температуры (при Т=0 К и температуре плавления концентрация электронов проводимости практически одинакова), а <ur> прямо пропорциональна , следовательно, согласно классической теории электропроводности, σ должна быть пропорциональна . Однако, экспериментально в широкой области температур получена зависимость , подтвержденная расчетами, проведенными на основе квантовой теории электропроводности.
В ней доказано, что внешнее электрическое поле ускоряет не все свободные электроны в металле (как принято считать в классической теории), а лишь электроны, находящиеся на уровне Ферми или вблизи него. Электроны на более "глубоких" уровнях не принимают участие в электропроводности.
Кроме того, следует учесть, что электроны проводимости перемещаются не только под действием внешнего электрического поля напряженности Е, но и в периодическом поле кристаллической решетки, действие которой следует учесть, введя эффективную массу электрона m*;
где — сила, обусловленная действием на электрон поля кристаллической решетки.
2. В чистом полупроводнике носителями тока также являются электроны проводимости, но механизм их возникновения отличается от механизма возникновения электронов проводимости в металлах.
Главные факторы их образования: тепловое хаотическое движение и наличие тепловых флуктуаций — отклонение энергий ионов (атомов) кристаллической решетки от их среднего значения (эти отклонения существуют при любой температуре, большей абсолютного нуля).
Такие атомы отдают валентные электроны, которые переходят через зону запрещенных энергий ΔЕg в зону проводимости. Поэтому при любой температуре, большей абсолютного нуля, в зоне проводимости полупроводника имеется некоторое количество электронов.
Одновременно с появлением в зоне проводимости электронов в ранее заполненной (валентной) зоне возникают дырки, перемещающиеся под действием внешнего электрического поля в направлении, противоположном перемещению электронов в зоне проводимости. При этом концентрации электронов и дырок одинаковы, nэ = nд = n, а суммарная плотность тока j, обусловленная движением электронов и дырок
uэ — подвижность электронов проводимости,
uд — подвижность дырок.
Для установления зависимости σ от Т, необходимо знать зависимость n, u э и uд от Т.
Концентрация электронов проводимости в полупроводнике при температуре Т пропорциональна вероятности заполнения уровня Е в зоне проводимости, которая определяется формулой
то есть где A — постоянная величина.
Примем E за нижнюю границу зоны проводимости, на которую переходит электрон с верхней границы валентной зоны Ев
E = Ев +ΔЕg/2 (уровень Ферми расположен посередине ΔЕg)
Отсюда следует, что
При ΔЕg >> kT, , и, следовательно, концентрация электронов проводимости
Зависимость подвижности носителей тока (электронов и дырок) от температуры обусловлена рассеянием электронов при столкновении их с атомами (ионами) кристаллической решетки (при взаимодействии с атомами происходит изменение скорости электронов, как по величине, так и по направлению). С повышением температуры полупроводника тепловое хаотическое движение атомов становится интенсивнее, рассеяние увеличивается, подвижность носителей тока u = < v >/E (где <v> — средняя скорость направленного движения электронов) уменьшается.
Опытным путем, на основе исследования эффекта Холла, установлено, что в области температур Т≥Тс (Тс — температура собственной проводимости) температурная зависимость подвижных носителей тока в атомных полупроводниках имеет вид u
T -3/2 , в ионных – u
Таким образом, при сравнении температурной зависимости n(T) и u(T) становится очевидной определяющая роль температурной зависимости n(T) в выражении для удельной электропроводности
3. В примесных полупроводниках при Т< Тс проводимость обусловлена преимущественно наличием примесей (донорных или акцепторных); при Т≥Тс появляется собственная проводимость.
Удельная электропроводность такого полупроводника описывается выражениями:
Первый член в выражении для σ − составляющая собственной проводимости, второй — примесной. В этом выражении ΔЕg — энергия диссоциации (ионизации) — ширина запрещенной зоны, ΔЕ1 и ΔЕ2 — энергии активации. У донорных примесей — это энергия, необходимая для перехода с донорного уровня на нижний уровень зоны проводимости (ΔЕ1, рис.6а), у акцепторных полупроводников — энергия, необходимая для перехода электрона с верхнего уровня валентной зоны (ΔЕ2, рис.6б).
В примесных полупроводниках при достаточно высоких температурах проводимость является собственной, а при низких – примесной.
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
Что такое уровень ферми
Разделы
Уровень Ферми
Вероятность нахождения электрона на том или ином энергетическом уровне при температуре Т определяется функцией Ферми – Дирака:
где WF – энергетический уровень, называемый уровнем Ферми.
При Т=0°К вероятность занятия электронами уровней W > WF равна нулю:
а уровней W < WF единице:
Энергия для перахода в зону проводимости берется от тепловых колебаний. Поэтому при Т=0°К свободных электронов в полупроводнике нет (ни один уровень в ЗП не занят электроном), все электроны находятся на орбитах (в ВЗ), следовательно, энергетические ЗП соответствуют условию W > WF, а энергетические уровни ВЗ – условию W < WF. Это говорит о том, что уровень Ферми WF расположен ниже «дна» ЗП WП и выше «потолка» ВЗ WВ, т.е. в ЗЗ. На рис. 3 приведены кривые функции Ферми – Дирака.
При Т=0°К фуекция fn(W) имеет ступенчатый характер. Вероятность занятия электронами уровней в ЗП = 0, а в ВЗ = 1.
При Т > 0°К появляется небольшая вероятность занятия электронами уровней в ЗП, а вероятность занятия уровней в ВЗ соответственно снижается.
Из формулы Ферми – Дирака видно, что при температуре, отличной от абсолютного нуля (Т>0), уровень Ферми – это такой энергетический уровень W = WF, формальная вероятность заполнения которого электроном равна 0,5 (т.к. е° = 1).
Формальное потому, что уровень Ферми находится в запрещенной зоне и фактически не может быть занят электроном. Таким образом, конкретный смысл имеют только те участники кривой распределения fn(W), которые расположены в ЗП и в ВЗ.
Кривая распределения Ферми – Дирака всегда симметрична относительно уровня Ферми. Из этого, в частности, следует, что в собственном полупроводнике уровень Ферми расположен посередине ЗЗ. При повышении температуры от нуля появляется определенная вероятность занятия электронами энергетических уровней в ЗП. Но при этом на такую же величину снижается вероятность нахождения электронов в ВЗ. Нетрудно видеть, что при симметричном размещении кривой распределения fn(W) относительно уровня Ферми это возможно только в случае, если уровень Ферми будет находиться посередине ЗЗ.