Главная страница » Что такое табулирование функции

Что такое табулирование функции

  • автор:

Применение табулирования функции в Microsoft Excel

Табулирование функции в Microsoft Excel

Табулирование функции представляет собой вычисление значения функции для каждого соответствующего аргумента, заданного с определенным шагом, в четко установленных границах. Эта процедура является инструментом для решения целого ряда задач. С её помощью можно локализовать корни уравнения, найти максимумы и минимумы, решать другие задачи. С помощью программы Excel выполнять табулирование намного проще, чем используя бумагу, ручку и калькулятор. Давайте выясним, как это делается в данном приложении.

Использование табулирования

Табулирование применяется путем создания таблицы, в которой в одной колонке будет записано значение аргумента с выбранным шагом, а во второй — соответствующее ему значение функции. Затем на основе расчета можно построить график. Рассмотрим, как это делается на конкретном примере.

Создание таблицы

Создаем шапку таблицы с колонками x, в которой будет указано значение аргумента, и f(x), где отобразится соответствующее значение функции. Для примера возьмем функцию f(x)=x^2+2x, хотя для процедуры табулирования может использоваться функция любого вида. Устанавливаем шаг (h) в размере 2. Граница от -10 до 10. Теперь нам нужно заполнить столбец аргументов, придерживаясь шага 2 в заданных границах.

Первое значение аргумента в Microsoft Excel

    В первую ячейку столбца «x» вписываем значение «-10». Сразу после этого жмем на кнопку Enter. Это очень важно, так как если вы попытаетесь произвести манипуляцию мышкой, то значение в ячейке превратится в формулу, а в данном случае это не нужно.

Таким образом, табуляция функции была проведена. На её основе мы можем выяснить, например, что минимум функции (0) достигается при значениях аргумента -2 и 0. Максимум функции в границах вариации аргумента от -10 до 10 достигается в точке, соответствующей аргументу 10, и составляет 120.

Построение графика

На основе произведенной табуляции в таблице можно построить график функции.

Lumpics.ru

Переход к построению графика в Microsoft Excel

  1. Выделяем все значения в таблице курсором с зажатой левой кнопкой мыши. Перейдем во вкладку «Вставка», в блоке инструментов «Диаграммы» на ленте жмем на кнопку «Графики». Открывается список доступных вариантов оформления графика. Выбираем тот вид, который считаем наиболее подходящим. В нашем случае отлично подойдет, например, простой график.
  2. После этого на листе программа выполняет процедуру построения графика на основе выделенного табличного диапазона.

Далее по желанию пользователь может отредактировать график так, как считает нужным, используя для этих целей инструменты Excel. Можно добавить названия осей координат и графика в целом, убрать или переименовать легенду, удалить линию аргументов, и т.д.

Как видим, табулирование функции, в общем, процесс несложный. Правда, вычисления могут занять довольно большое время. Особенно, если границы аргументов очень широкие, а шаг маленький. Значительно сэкономить время помогут инструменты автозаполнения Excel. Кроме того, в этой же программе на основе полученного результата можно построить график для наглядного представления.

4.1. Табулирование функции

Табулирование функции представляет собой достаточно простую по своей концепции математическую задачу, связанную с составлением некоторой таблицы, в которую заносят значения независимой переменной (аргумента) х и соответствующих им значения зависимой переменной (функции) у. Однако, идеологическая простота этой задачи часто «компенсируется» серьезными вычислительными трудностями особенно, когда исследуемая функциональная зависимость между переменными х и у не является тривиальной.

В качестве примера выполним табулирование функции следующего вида:

y=5∙e x ∙cos(5x)

на множестве значений аргумента от 0 до 5 с шагом его изменения равным 0,5.

1. Выделите все ячейки ЭТ и установите ширину ее столбцов равной 9 единицам. Примените к ячейкам ЭТ шрифт «Times New Roman Cyr», начертание обычное, размер кегля 12 пунктов. Выберите масштаб отображения ЭТ равным 75%.

2. Введите в ячейку A1 строку «Лабораторная работа №4 «Табулирование функции». В ячейки A3:A5 введите заголовки строк расчетной таблицы: «№ шага», «Аргумент» и «Функция» соответственно.

4. В ячейки B3:L3 введите методом автозаполнения номера шагов расчета от 1 до 11, а в ячейки B4:L4 – расчетные значения аргумента.

5. В ячейку B5 введите формулу расчета значения функции =5*exp(-B4)*cos(5*B4) для значения аргумента, хранящегося в ячейке B4. Методом автозаполнения скопируйте эту расчетную формулу в правые соседние ячейки до L5 включительно.

6. Выполните форматирование заголовка таблицы, содержимого ячеек и их границ. Для этого:

6 .1. Выделите ячейку А1 и примените к ней шрифт «Arial Cyr», начертание полужирное, размер кегля 12 пунктов. Выделите ячейки А1:L1 и выполните операцию центрирования заголовка по ширине таблицы, щелкнув мышкой по кнопке «Объединить и поместить в центре», расположенную на панели инструментов «Форматирование».

6 .2. Выделите блоки ячеек А3:А5, B3:L3 и примените к ним шрифт «Times New Roman Cyr», начертание полужирное, размер кегля 12 пунктов.

6.3. Щелкните мышкой по стрелке расширения списка кнопки «Границы», расположенную на панели инструментов «Форматирование», и отбуксируйте панель «Границы» в поле ЭТ (для Вашего удобства работы с инструментами данной панели). Выделите блоки ячеек А3:L5 и примените к ним операции форматирования границ.

Правильный результат создания электронной таблицы, предназначенной для решения математической задачи, связанной с табуляцией средствами программы Excel функции указанного выше вида, представлен на рис. 4.

Рис. 4. Электронная таблица табулирования функции.

ЗАДАНИЕ 16. Выполните табулирование одного из вариантов функций на множестве значений аргумента от 0 до 5 с шагом его изменения равным 0,5.

Табулирование функции

Не путать с «симплекс-методом» — методом оптимизации произвольной функции. См. Метод Нелдера — МидаСимплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве.

В информатике временна́я сложность алгоритма определяет время работы, используемое алгоритмом, как функции от длины строки, представляющей входные данные . Временная сложность алгоритма обычно выражается с использованием нотации «O» большое, которая исключает коэффициенты и члены меньшего порядка. Если сложность выражена таким способом, говорят об асимптотическом описании временной сложности, т.е. при стремлении размера входа к бесконечности. Например, если время, которое нужно алгоритму для выполнения.

В комбинаторной оптимизации под линейной задачей о назначениях на узкие места (linear bottleneck assignment problem, LBAP) понимается задача, похожая на задачу о назначениях.

В математике методы проверки на простоту с помощью эллиптических кривых (англ. — Elliptic Curve Primality Proving, сокр. ЕСРР) являются одними из самых быстрых и наиболее широко используемых методов проверки на простоту . Эту идею выдвинули Шафи Гольдвассер и Джо Килиан в 1986 году; она была превращена в алгоритм А.О.Л. Аткином в том же году. Впоследствии алгоритм был несколько раз изменён и улучшен, в особенности Аткином и François Morain в 1993. Концепция использования факторизации с помощью эллиптических.

Спектральные методы — это класс техник, используемых в прикладной математике для численного решения некоторых дифференциальных уравнений, возможно, вовлекая Быстрое преобразование Фурье. Идея заключается в переписи решения дифференциальных уравнений как суммы некоторых «базисных функций» (например, как ряды Фурье являются суммой синусоид), а затем выбрать коэффициенты в сумме, чтобы удовлетворить дифференциальному уравнению, насколько это возможно.

Ядерные методы в машинном обучении — это класс алгоритмов распознавания образов, наиболее известным представителем которого является метод опорных векторов (МОВ, англ. SVM). Общая задача распознавания образов — найти и изучить общие типы связей (например, кластеров, ранжирования, главных компонент, корреляций, классификаций) в наборах данных. Для многих алгоритмов, решающих эти задачи, данные, представленные в сыром виде, явным образом преобразуются в представление в виде вектора признаков посредством.

Квазианалити́ческие фу́нкции в математическом анализе — класс функций, которые, нестрого говоря, можно полностью реконструировать по их значениям на небольшом участке (например, на границе области). Такое свойство значительно облегчает решение дифференциальных уравнений и исследование других задач анализа. Поскольку это свойство выполняется для аналитических функций (см. Комплексный анализ), то класс квазианалитических функций содержит класс обычных аналитических функций и может рассматриваться как.

Применение табулирования функции в Microsoft Excel

Применение табулирования функции в Microsoft Excel

Табулирование функции представляет собой вычисление значения функции для каждого соответствующего аргумента, заданного с определенным шагом, в четко установленных границах. Эта процедура является инструментом для решения целого ряда задач. С её помощью можно локализовать корни уравнения, найти максимумы и минимумы, решать другие задачи. С помощью программы Excel выполнять табулирование намного проще, чем используя бумагу, ручку и калькулятор. Давайте выясним, как это делается в данном приложении.

  • Использование табулирования
    • Создание таблицы
    • Построение графика

    Табулирование применяется путем создания таблицы, в которой в одной колонке будет записано значение аргумента с выбранным шагом, а во второй — соответствующее ему значение функции. Затем на основе расчета можно построить график. Рассмотрим, как это делается на конкретном примере.

    Создаем шапку таблицы с колонками x, в которой будет указано значение аргумента, и f(x), где отобразится соответствующее значение функции. Для примера возьмем функцию f(x)=x^2+2x, хотя для процедуры табулирования может использоваться функция любого вида. Устанавливаем шаг (h) в размере 2. Граница от -10 до 10. Теперь нам нужно заполнить столбец аргументов, придерживаясь шага 2 в заданных границах.

    Применение табулирования функции в Microsoft Excel

    Применение табулирования функции в Microsoft Excel

    Применение табулирования функции в Microsoft Excel

    Применение табулирования функции в Microsoft Excel

    Применение табулирования функции в Microsoft Excel

    Применение табулирования функции в Microsoft Excel

    Применение табулирования функции в Microsoft Excel

    Таким образом, табуляция функции была проведена. На её основе мы можем выяснить, например, что минимум функции (0) достигается при значениях аргумента -2 и 0. Максимум функции в границах вариации аргумента от -10 до 10 достигается в точке, соответствующей аргументу 10, и составляет 120.

    Урок: Как сделать автозаполнение в Эксель

    На основе произведенной табуляции в таблице можно построить график функции.

    Применение табулирования функции в Microsoft Excel

    Применение табулирования функции в Microsoft Excel

    Далее по желанию пользователь может отредактировать график так, как считает нужным, используя для этих целей инструменты Excel. Можно добавить названия осей координат и графика в целом, убрать или переименовать легенду, удалить линию аргументов, и т.д.

    Урок: Как построить график в Эксель

    Как видим, табулирование функции, в общем, процесс несложный. Правда, вычисления могут занять довольно большое время. Особенно, если границы аргументов очень широкие, а шаг маленький. Значительно сэкономить время помогут инструменты автозаполнения Excel. Кроме того, в этой же программе на основе полученного результата можно построить график для наглядного представления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *