Главная страница » Как проверить стабилизатор напряжения на работоспособность к140ен2б

Как проверить стабилизатор напряжения на работоспособность к140ен2б

  • автор:

Необходимость стабилизаторов напряжения

Частое мигание ламп освещения, надсадная работа холодильника, сбои компьютеров – такие явления не редкость для малонаселенных пунктов, деревень и дачных поселков. Системы электро-коммуникаций не всегда способны своевременно отреагировать на резкое увеличение или уменьшение нагрузки сети. В таком случае собственный стабилизатор напряжения становится единственным гарантом нормальной работоспособности электрооборудования.

Стабилизаторы напряжения

Зачем и когда нужен стабилизатор напряжения

По пути от электростанции к розетке потребителя электроэнергия претерпевает множественные изменения. Большое количество промежуточных пунктов, некачественные линии, подверженность внешним факторам негативно отражаются на ее параметрах, наиболее важными из которых являются амплитуда, частота и плавность синусоиды. При значительном количестве потребителей оконечные трансформаторы не всегда способны справиться с внезапно изменившейся нагрузкой. Результатом становятся всплески, повышенное или заниженное напряжение.

Этот факт отрицательно сказывается на работоспособности оборудования и аппаратуры, питаемой от сети переменного тока. Результатом становятся перегоревшие лампочки и вышедшая из строя бытовая техника. Больше всего страдает электроника, чувствительно реагирующая на малейшие перепады питания. В таких случаях обязательно нужен стабилизатор напряжения, который будет автоматически поддерживать напряжение в определенном диапазоне, независимо от входящих параметров и используемой нагрузки. При повышении амплитуды на входе оно автоматически понижается, а при пониженных показателях – поднимается. Если прибор не в состоянии обеспечить требуемые показатели электрического тока, он отключает сеть. Помимо амплитуды, устройство контролирует равномерность синусоиды. В зависимости от типа и особенностей стабилизаторы реагируют как на резкие всплески напряжения, так и на длительные изменения.

Стабилизаторы разнятся по множеству параметров. Они делятся на промышленные и бытовые, накопительные и корректирующие, однофазные и трехфазные, отличаются схематически и по способу установки.

В быту наиболее распространенными являются однофазные устройства, рассчитанные на работу с напряжением 220 В. Эти приборы – неизменные спутники жителей сельской местности, где острее всего ощущаются проблемы со стабильностью электросети.

Феррорезонансные

Приспособления вошли в обиход в 60-х годах прошлого столетия и нередко применяются сейчас. В их схему включены трансформаторы, дроссели, конденсаторы. Работа приборов основана на принципе насыщения сердечников из ферромагнетиков.

Феррорезонансные стабилизаторы заслуженно пользуются популярностью благодаря своей простоте, неприхотливости и долговечности. Устройства гарантируют быструю реакцию на изменения параметров тока и обладают приличной точностью. К недостаткам данного типа относятся:

  • зависимость от нагрузки и малый диапазон стабилизации;
  • неспособность удерживать синусоиду в определенном виде;
  • излишняя шумность;
  • значительный вес.

Ко всему следует добавить довольно низкий КПД, который колеблется в пределах 70–80%.

Сервоприводные

Чтобы понять, как работает такой стабилизатор напряжения, достаточно представить реостат. Одним из основных узлов такого прибора является электродвигатель. Электронная схема реагирует на изменения на входе и дает команду мотору, с помощью которого контактная группа перемещается по обмотке трансформатора до получения на выходе тока с необходимыми параметрами.

В зависимости от исполнения подвижных элементов, такие приборы подразделяются на электромеханические и электродинамические. В первых съем тока осуществляется при помощи щеток, во втором случае для этой цели используется ролик.

К неоспоримым достоинствам таких приспособлений относится плавность регулировки и возможность получения идеальной синусоиды. При этом, амплитуда на выходе не уходит от заданной в пределах 2–3 %. Приборы отлично подходят для бытовых нужд и эффективно используются в производственных целях.

стабилизатор напряжения сервоприводный

Logicpower LPM-3000SD (2400Вт) стабилизатор напряжения сервоприводный

Плюсы сервоприводных устройств:

  1. Возможность работы в большом диапазоне (от 130 до 260 В).
  2. Сохранение работоспособности при кратковременных всплесках, превышающих номинал в 2 раза.
  3. Устранение помех.

Из недостатков отмечаются:

  • Шум двигателя при подстройке.
  • Возможность кратковременного отключения нагрузки при резких и мощных скачках напряжения на входе.
  • Медленная реакция на изменение входных параметров.
  • Зависимость от температуры окружающей среды, что сужает их область применения.

Приборы могут обеспечивать большую мощность (свыше 10 кВт) и активно используются в домах сельской местности, где проблема с качеством электроэнергии стоит особенно остро.

Релейные

Эти устройства сходны по принципу с сервоприводными, но в отличие от последних, реакция на входное напряжение здесь осуществляется не плавно, а ступенчато. Для выбора определенного участка обмотки автотрансформатора используются электромеханические реле. Чем больше их задействовано в схеме, тем ровнее осуществляется регулировка. В большинстве случаев, эти приспособления рассчитаны на один, четко установленный выходной номинал.

стабилизатор напряжения однофазный релейный

LogicPower LPH-1000RD (700Вт)

Положительные качества релейных вариантов стабилизации:

  1. Расширенный рабочий диапазон (140–270 В).
  2. Мгновенная реакция на резкие изменения параметров электротока.
  3. Возможность кратковременной перегрузки более чем в 2 раза.
  4. Компактность.

К недостаткам относятся:

  • дискретный переход к номиналу;
  • некачественная синусоида;
  • ограничение по нагрузке;
  • низкая точность стабилизации.

Невысокая мощность приборов компенсируется их небольшими габаритами и весом. Точность стабилизации повышается дополнительными реле и разбивкой обмоток трансформатора на большее количество активных зон, однако это приводит к усложнению схемы и снижает надежность.

Электронные

Здесь также преобразование входного напряжения производится ступенчато, только в качестве ключей используются не реле, а симисторы и тиристоры. Отсутствие механических деталей исключает шумовые эффекты и значительно повышает срок эксплуатации. По остальным показателям они полностью идентичны релейным.

Стабилизатор напряжения СНР1-1-1 кВА электронный стационарный, IEK

Стабилизатор напряжения СНР1-1-1 кВА электронный стационарный, IEK

Гибридные

Один из самых совершенных видов. В их схеме используется сочетание электромеханических и релейных устройств. При этом реле вступают в работу, когда сервоприводный стабилизатор уже неспособен поддерживать на выходе необходимый номинал. Такой подход позволяет значительно расширить рабочий диапазон от 105 до 280 В.

Энергия СНВТ 500/1 Hybrid, мощность 0,5 кВА

Энергия СНВТ 500/1 Hybrid, мощность 0,5 кВА

Выбор

При выборе устройства стабилизации следует определиться, для каких приборов будет использоваться стабилизатор напряжения. В зависимости от этого определяется необходимая точность прибора, существенно отражающаяся на его стоимости.

Из остальных параметров внимание уделяется:

  1. Рабочему диапазону. Его показатели подбираются на основе изучения нестабильности сети в конкретном месте. Для бытовых нужд достаточно устройств, поддерживающих 220 В с отклонением в меньшую или большую сторону не более чем на 5%.
  2. Предельным характеристикам и способности сохранять работоспособность при кратковременных перегрузках.
  3. Защите от короткого замыкания.
  4. Возможности регулировки выхода, наличию индикации.
  5. Отключению в критическом режиме и самостоятельное возвращение в рабочее состояние.
  6. Помехозащищенности.

Особенности установки

Переносные устройства для стабилизации напряжения независимого типа не требуют особых условий для установки. Для этого необходима ровная поверхность, обеспечивающая устойчивое положение прибора. Место должно быть безопасно в пожарном плане, быть проветриваемым и соответствовать показателям по влажности и температуре.

Стационарные варианты используются при наличии в помещении или здании большого количества техники, чувствительно реагирующей на качество питания. Чтобы определиться с вопросом, где установить стабилизатор напряжения, следует выбрать стену, с местом, обеспечивающим свободный и быстрый доступ.

Для монтажа устройства лучше воспользоваться услугами профессионального электрика, однако при достаточных навыках, эту процедуру можно выполнить самостоятельно, при обязательном условии соблюдения правил техники безопасности. Все работы должны производиться при обесточенной проводке.

Прибор должен быть оснащен жестким и надежным креплением. Его подключение к сети осуществляется после счетчика, при этом особое внимание следует уделить кабелю, сечение которого рассчитывается исходя из мощности устройства. Выход с преобразователя соединяется с распределительным щитком, располагаемым непосредственно рядом с устройством и содержащим автоматы, позволяющие отключать нагрузку по отдельности.

Как и любой электроприбор, особенно когда его корпус сделан из металла, стабилизатор напряжения нужно обязательно заземлять. Его наличие позволяет избежать нештатной ситуации и ограждает от удара электрическим током.

Методы проверки стабилитрона мультиметром и тестером. Как проверить стабилизатор напряжения

Как правильно проверить стабилизатор напряжения мультиметром

Стабилизаторы напряжения – это электронные приборы со сложным устройством, а значит, они имеют разные накладки в функционировании и возможные неисправности. Существуют разные казусы в их работе, которые связаны с наибольшими нагрузками, а есть и настоящие поломки. Эти понятия следует отличать, для чего существует несколько советов.

В первую очередь, рассмотрим, чем можно произвести качественную проверку работы этого устройства. Наиболее верным методом контроля качества устройства является обычный вольтметр, которым можно измерить напряжение в сети квартиры, а также напряжение на выходе прибора. В домашней розетке напряжение способно колебаться в интервале 170-240 вольт, а на выходе стабилизирующего прибора оно должно равняться 220 вольтам.

Но простым методом проверки действия стабилизатора напряжения пользуются далеко не все, так как доверяют данным по индикатору. Но это доверие не всегда оправдывается, а иногда на китайских приборах цифровой индикатор просто подключен непосредственно к реле. В этом случае реле имеют достаточно большой шаг, и он всегда будет показывать 220 В. По факту на выходе будет совсем другое значение.

Как проверить электрический стабилизатор

Эта проверка выполняется довольно просто. Для этого необходимо взять следующие устройства:

  • Две настольные лампы.
  • Стабилизатор.
  • Электрическую плитку.
  • Удлинитель питания с 3-мя гнездами.
  1. Вставить вилку удлинителя в домашнюю розетку.
  2. Стабилизатор подключить к удлинителю.
  3. К стабилизатору подключить настольную лампу на 60 Вт.
  4. Подключить электрическую плитку к удлинителю.

Если стабилизатор функционирует нормально, то работа плитки не повлияет на свет лампочки, а ели лампу подключить напрямую к удлинителю, то при включении плитки свет станет слабее. Это объясняется тем, что мощный потребитель в виде плитки значительно снижает напряжение и лампа, подключенная к сети до прибора, станет выдавать меньше света. Но лампа, питающаяся после стабилизатора напряжения, не будет реагировать на повышение нагрузки.

Случается, и такая ситуация, когда люди не понимают работу стабилизатора, и сетуют на его плохую работу, хотя дело совершенно не в этом. Это получается так, что стабилизатор обесточивает нагрузку неожиданно, при стирке белья в машине автомате. Но в этом нет никаких неисправностей. Стиральная машина-автомат является мощным потребителем электрической энергии, но ее мощность распределяется неравномерно. При нагревании воды мощность может достигать до 5 кВт, а при обычной стирке уменьшается до 2 кВт. Из уроков физики средней школы известно, что если на входе трансформатора уменьшить напряжение, а на выходе увеличить напряжение, то выходная мощность также значительно снизится. Смотрите статью про стабилизатор для стиральной машины.

Поэтому может возникнуть такая ситуация, что при уменьшении напряжения на выходе стабилизатора напряжения мощности будет достаточно для вращения барабана, но недостаточно для нагревания воды. В этом случае необходимо выключить все лишние потребители и налить в машину, отдельно нагретую воду.

Проверка стабилитрона мультиметром

Такой электронный элемент, как стабилитрон, внешне похож на диод, но использование его в радиотехнике несколько другое. Чаще всего стабилитроны применяют для стабилизации питания в маломощных схемах. Они включаются по параллельной схеме к нагрузке. При работе с чрезмерно высоким напряжением стабилитрон через себя пропускает ток, сбрасывая напряжение. Эти элементы не способны работать при больших токах, так как они начинают греться, что приводит к тепловому пробою.

Порядок проверки

Весь процесс сводится к тому, как проверяют диоды. Это делается обычным мультиметром в режиме проверки сопротивления или диода. Исправный стабилитрон может проводить ток в одном направлении, по аналогии с диодом.

Рассмотрим пример проверки двух стабилитронов КС191У и Д814А, один из них неисправный.

Как правильно проверить стабилизатор напряжения мультиметром

Сначала проверяем диод Д814А. При этом стабилитрон по аналогии с диодом пропускает ток в одну сторону.

Как правильно проверить стабилизатор напряжения мультиметром

Теперь проверяем стабилитрон КС191У. Он заведомо неисправен, так как совсем не может пропускать ток.

Как правильно проверить стабилизатор напряжения мультиметром

Проверка микросхемы стабилизатора

Требуется собрать стабилизирующие цепи для питания устройства на микроконтроллере PIC 16F 628, который нормально работает от 5 В. Для этого берем микросхему PJ 7805, и на ее базе по схеме из даташита выполняем сборку. Подается напряжение, а на выходе получается 4,9 В. Этого хватает, но упрямство берет верх.

Как правильно проверить стабилизатор напряжения мультиметром

Достали коробку с интегральными стабилизаторами, и будем измерять их параметры. Чтобы не сделать ошибки, кладем перед собой схему. Но при проверке микросхемы оказалось, что на выходе всего 4,86 В. Здесь необходим какой-либо пробник, чем и займемся.

Схема пробника для проверки микросхемы КРЕН

Эта схема уступает предыдущей компоновке.

Как правильно проверить стабилизатор напряжения мультиметром

Конденсатор С1 удаляет генерацию при ступенчатом подключении входного напряжения, а емкость С2 предназначена для защиты от импульсных помех. Величину ее берем 100 микрофарад, напряжение по величине стабилизатора напряжения. Диод 1N 4148 не дает возможность конденсатору разрядиться. Входное напряжение стабилизатора должно превышать напряжение выхода на 2,5 В. Нагрузку следует выбирать в соответствии с тестируемым стабилизатором.

Как правильно проверить стабилизатор напряжения мультиметром

Остальные элементы пробника выглядят следующим образом:

Как правильно проверить стабилизатор напряжения мультиметром

Как правильно проверить стабилизатор напряжения мультиметром

Контактные площадки стали местом монтажа элементов схемы. Корпус получился компактным.

Как правильно проверить стабилизатор напряжения мультиметром

На корпусе установили кнопку питания для удобства пользования. Штыревой контакт пришлось доработать путем изгибания.

Как правильно проверить стабилизатор напряжения мультиметром

На этом пробник готов. Он является своеобразной приставкой к мультиметру. Вставляем в гнезда штыри пробника, границу измерения устанавливаем на 20 В, провода соединяем с блоком питания, регулируем напряжение на 15 В и нажимаем кнопку питания на пробнике. Прибор сработал, на экране отображается 9,91 вольта.

КАК ПРОВЕРИТЬ МИКРОСХЕМУ СТАБИЛИЗАТОР

Понадобилось собрать входные стабилизирующие цепи по питанию для устройства на основе микроконтроллера PIC16F628 стабильно работающего при напряжении от 5 вольт. Это не сложно. Взял интегральную микросхему PJ7805 и на её основе в соответствии со схемой из даташита сделал. Подал напряжение и на выходе получил 4,9 вольта. Всего скорей, что этого вполне достаточно, но упрямство, замешанное на педантичности, взяло верх.

Подключаем интегральную микросхему PJ7805

Достал коробушку с интегральными стабилизаторами и вознамерился перемерить все соответствующего достоинства. А чтобы вдруг не ошибиться даже соответствующую схемку выложил перед собой. Однако энтузиазм закончился уже на первом же компоненте. Этот «ёжик без ручек, без ножек» из соединительных проводов с крокодилами желал жить своей жизнью и воли радиолюбителя подчинялся с большим трудом. Да к тому же проверяемый стабилизатор на выходе показал 4,86 вольта, чем поверг мой оптимизм в уныние.

Комплекс контроля интегральных стабилизаторов напряжения

Нет тут нужно что-то более существенное, например какой-то пусть и простой но, тем не менее, пробник что ли. Забил в поисковик яндекса и получил то, что видите на фото «Комплекс контроля интегральных стабилизаторов напряжения». Ну, это не для средних радиолюбительских умов. Стало ясно, что велосипед придётся изобретать.

Схема испытателя КРЕН

Схема испытателя КРЕН

Составленная схема явно уступает верхней картинке, ну тут уж ничего не поделаешь, что можем. Конденсатор С1 устраняет генерацию при скачкообразном включении входного напряжения, С2 служит для защиты от переходных помеховых импульсов. Их ёмкость решил взять 100 мкФ. Вольтаж в соответствии с напряжением проверяемого стабилизатора. Ставить конденсаторы как можно ближе к корпусу интегрального стабилизатора. Диод VD1 1N4148 не позволит конденсатору на выходе стабилизатора разрядится через него после выключения (это чревато выходом стабилизатора из строя). U Вх. интегрального стабилизатора должно быть выше U Вых. минимум на 2,5 вольта. Нагрузку подбирать так же в соответствии с возможностями тестируемого стабилизатора.

На роль корпуса был выбран самодельный вариант оборудованный контактными штырями для соединения с мультиметром (минус в гнездо «сom», плюс в «V»). В качестве соединительного элемента выводов проверяемого компонента со схемой можно приспособить вот такой тройной штыревой контакт. В мою задачу входит проверка трёхвыводных интегральных стабилизаторов рассчитанных на напряжение не более 12 вольт поэтому в схему поставлю два конденсатора 100 мкф х 16 В. Диод согласно схемы.

УСТРОЙСТВО ЧТОБ ПРОВЕРИТЬ МИКРОСХЕМУ СТАБИЛИЗАТОР

В просверленные точно в соответствии с диаметром штыревых контактов отверстия их и вставляем, с внутренней стороны надеваем на каждый штырь по соответствующей (махонькой) металлической шайбочке, смочив активным флюсом и плотно прижав припаиваем каждую шайбу к соответствующему штырю не допуская соединения пар штырь – шайба между собой. Для этого шайбы нужно подточить, центральную с обеих сторон, крайние с одной. Отверстия по месту установки нужно именно просверлить, если проколоть шилом образуется внутренняя неровность краёв отверстия и ровно + плотно установить шайбу не выйдет. Штыри, для прочности, также обязательно должны находится на общем твёрдом основании из диэлектрика.

КАК ПРОВЕРИТЬ МИКРОСХЕМУ СТАБИЛИЗАТОР КРЕН и ЛМ

Контактные площадки образованные местом пайки штырей и шайб становятся местом установки компонентов схемы. Получается компактно, также выполняется рекомендация минимального расстояния конденсаторов от выводов проверяемого интегрального стабилизатора. С соединительными проводами всё просто, главное взять их соответствующего цвета (для «+» красный, для «-» чёрный) и никакой путаницы не будет.

ТЕСТЕР МИКРОСХЕМ СТАБИЛИЗАТОРОВ

Подумав, установил кнопку включения нажимного действия, поставлена в разрыв плюсового (красного) провода на входе питания. Всё таки это удобство из разряда необходимых. Тройной штыревой контакт понадобилось «доработать» — немного согнуть, тут так, либо один раз подогнать контакты под выводы компонентов, либо перед каждым соединением ножки стабилизаторов гнуть под контакты.

Приставка самодельный пробник трёхвыводных интегральных стабилизаторов напряжения

Пробник – приставка к мультиметру готов. Вставляю в соответствующие гнёзда мультиметра штыри пробника, предел измерения выставляю 20 вольт постоянного напряжения, провода подвода электрического тока подсоединяю к лабораторному блоку питания в соответствии с их расплюсовкой, устанавливаю для проверки стабилизатор (попался на 10 вольт), выставляю соответственно на БП напряжение 15 вольт и нажимаю кнопку включения на пробнике. Устройство сработало, на дисплее 9,91 В. Далее в течении минуты разобрался со всеми трёхвыводными стабилизаторами на напряжение до 12 вольт включительно. Несколько, из числа бережно хранимых, оказались негодными.

Итого

Давно понятно, что вот такие простенькие пробники – приставки в радиолюбительском деле так же необходимы, как и весьма серьёзные измерительные приборы, но вот делать их (возиться с их изготовлением) попросту лень, а напрасно, и понимание этого приходит каждый раз когда это простенькое устройство всё же было собрано и оказало неоценимую помощь в творческих начинаниях. Автор — Babay iz Barnaula.

Обсудить статью КАК ПРОВЕРИТЬ МИКРОСХЕМУ СТАБИЛИЗАТОР

Проверка стабилитрона на плате прибором мультиметр

Каждый радиолюбитель знает, как бывает иногда важно знать, исправна ли та или иная радиодеталь или нет. Не в последнюю очередь это касается стабилитронов. В качестве тестера для проверки электрокомпонентов на предмет наличия напряжения стабилизации служит мультиметр.

Пригодность электродеталей определяется мультиметром

Стабилитрон и его свойства

Для работы электронных схем на выходе нужны стабилизированные показатели напряжения. Они получаются с помощью включения в схему полупроводниковых стабилитронов, которые дают одинаковое выходное напряжение, не зависящее от величины пропускаемого электротока. Без этих элементов многие слаботочные системы не работают. Так, например, почти каждый радиолюбитель хотя бы раз в жизни паял стабилизатор напряжения l7805cv или его аналоги.

Стабилитрон помогает стабилизировать напряжение

У стабилитронов нелинейные вольт-амперные характеристики, по свойствам, а также по внешнему виду (в стекле или металле) они напоминают обычный диод, однако, задачи у них несколько другие. Стабилитроны подключают в схему параллельно с потребителем и, если напряжение резко повышается, ток идет через стабилитрон, и вольтаж в сети выравнивается. Если сильный ток воздействует длительное время, возникает тепловой пробой.

Порядок проверки

Для того чтобы определить, годен ли данный стабилитрон или же вышел из строя, мультиметр надо перевести в режим, которым проверяются диоды (или в режим омметра), – проверка стабилитронов методом прозвона осуществляется аналогичным образом.

Щупы мультиметра подсоединяют к выводам стабилитрона и наблюдают за показаниями индикатора. Проверку следует проводить в двух направлениях:

  • плюсовым щупом аппарата прикасаются к катоду детали – на индикаторе показывается бесконечное сопротивление;
  • мультиметр подсоединяют к аноду стабилитрона – на экране будет индицироваться сопротивление в единицах или десятках ом (падение напряжения).

Такие показатели появляются потому, что рабочий стабилитрон (как и обычный диод) способен проводить только однонаправленный электрический ток, а проверка не должна вызывать короткое замыкание в сети.

Проверка мультиметром исправного стабилитрона

Если при прозвоне в обоих направлениях мультиметр показывает бесконечное сопротивление, стабилитрон является дефектным, поскольку оборван электронно-дырочный переход, и ток через электродеталь не проходит.

Картина при проверке нерабочего стабилитрона

Обратите внимание! Иногда случается, что при измерениях стабилитрона мультиметром выдается сопротивление в несколько десятков или сотен ом в обоих направлениях. В случае обычных диодов такое положение обозначает, что деталь пробита. Однако, для стабилитрона это неверно, потому что у него имеется напряжение пробоя: при соприкосновении щупа мультиметра с оконцовками стабилитрона сказывается внутреннее напряжение электропитания измерительного прибора. Если его напряжение оказывается больше напряжения пробоя, то на индикаторе появятся показатели многоомного сопротивления.

Так, при напряжении батареи мультиметра в 9 вольт у стабилитронов с напряжением ниже этого значения будет индицироваться пробой. Поэтому специалисты не рекомендуют делать проверку стабилитронов с невысоким стабилизационным напряжением с помощью цифровых мультиметров. Для этих целей лучше подойдет старый добрый тестер – аналог.

Аналоговый тестер старого образца поможет проверить стабилитроны с низким напряжением, избежав пробоя

Как проверить стабилитрон на плате

Если стабилитрон впаян в плату, то порядок его проверки не отличается от того, что применяется для свободного электронного устройства такого типа.

Важно! При измерительных и ремонтных манипуляциях с платой обязательно соблюдать меры безопасности для защиты от электроудара. При прозвоне впаянного стабилитрона все другие элементы, кроме проверяемого, могут выдавать сильно измененные показатели, это тоже необходимо учитывать.

Если при проверке на плате получены сомнительные результаты пригодности стабилитрона, то стоит его выпаять и проверить мультиметром только этот элемент, изолировав его от влияния остальных деталей схемы. Также иногда можно использовать приставку к мультиметру, которую можно спаять своими руками из доступных деталей.

Каждому радиолюбителю желательно знать, как проверить стабилитрон мультиметром, – это поможет собирать работающие схемы и экономить радиодетали, выявляя неработающие. Однако при такой проверке нельзя получить 100%-ный достоверный результат. Гарантию пригодности стабилитрона может дать только включение его в электросхему: если устройство будет работать, значит, стабилизирующий элемент функционирует.

Видео

Как проверить стабилитрон мультиметром и сделать для него тестер своими руками

Внешне стабилитрон похож на диод, выпускается в стеклянном и металлическом корпусе. Его главное свойство заключается в сохранении постоянного напряжения на своих выводах при достижении определенного потенциала. Это наблюдается у него при достижении напряжения туннельного пробоя.

Обычные диоды при таких значениях быстро доходят до теплового пробоя и перегорают. Стабилитроны, их еще называют диодами Зенера, в режиме туннельного или лавинного пробоя могут находиться постоянно, без вреда для себя, не доходя до теплового пробоя. Прибор изготавливается из монокристаллического кремния, в электронной аппаратуре выступает как стабилизатор или опорное напряжение. Высоковольтные защищают от перенапряжений, интегральные стабилитроны со скрытой структурой используются в качестве эталонного напряжения в аналого-цифровых преобразователях.

Проверка тестером

Так как стабилитрон и диод имеют почти одинаковые вольтамперные характеристики за исключением участка пробоя, то мультиметром стабилитрон проверяется, как и диод.

Проверка осуществляется любым мультиметром в режиме прозвона диода или определения сопротивления. Выполняются такие действия:

  • переключателем устанавливают диапазон измерения Омов;
  • к выводам радиодетали подсоединяются измерительные щупы;
  • мультиметр должен показать единицы или доли Ом, если его внутренний источник питания подключится плюсом к аноду;
  • поменяв щупы местами, меняем полярность напряжения на выводах полупроводника и получаем сопротивление близкое к бесконечности, если он исправен.

Чтобы убедиться в исправности стабилитрона переключаем мультиметр на диапазон измерения сопротивления в килоомах и проводим измерение. При исправном приборе, показания должны лежать в пределах десятков и сотен тысяч Ом. То есть он пропускает ток, как обычный диод.

Частные случаи

Иногда, мультиметр при проверке исправного полупроводника в режиме измерения сопротивления при обратной полярности показывает значение сильно отличающееся от ожидаемого. Вместо сотен килоом – сотни ом. Создается впечатление, что он пробит, и прозванивается в обе стороны.

Это возможно в случае использования в мультиметре внутреннего источника питания, превышающего напряжение стабилизации стабилитрона.

Полупроводник уменьшает свое внутреннее сопротивление до тех пор, пока не достигнет напряжения стабилизации. Поэтому при измерениях необходимо это учитывать.

Иногда, при прозвонке мультиметр показывает большое сопротивление при прямом и обратном потенциале. Скорее всего, это двуханодный стабилитрон, поэтому для него полярность значения не имеет. Для проверки исправности потребуется приложить напряжение чуть больше стабилизирующего, при этом менять полярность. Измеряя токи, проходящие через него и сравнивая вольтамперные характеристики прибора можно выяснить состояние устройства.

Проверка диода Зенера на печатной плате затруднена влиянием других элементов. Для надежного контроля работоспособности необходимо выпаять один вывод, производить измерения вышеописанным способом.

Тестер для стабилитронов

Проверка стабилитронов мультиметром не дает 100% гарантии их исправности. Это связано с тем, что он не может проверить его основные параметры. Поэтому многие радиолюбители изготавливают тестер стабилитронов своими руками.

Схема самого простого варианта состоит из набора аккумуляторов, постоянного резистора номиналом 200 Ом, переменного сопротивления на 2 кОм и мультиметра. Аккумуляторы соединяются последовательно для получения потенциала необходимого для измерения параметров стабилитронов. Напряжения стабилизации в основном лежат в пределах 1,8-16 В. Поэтому собирается батарея на 18 В. Затем к ее выводам параллельно подсоединяем последовательную цепочку из переменного резистора на 2 кОм мощностью 5 Вт и постоянного на 200 Ом. Второй будет играть роль ограничивающего сопротивления. Выводы переменного резистора присоединяются к трехконтактной клеммной колодке. К первому контакту присоединяется вывод, подключенный к плюсу батареи, ко второму другой крайний вывод, а к третьему средний подвижный контакт резистора.

В других вариантах тестеров можно применять импульсные источники питания с регулируемым напряжением выходного каскада, но суть не меняется, измерителем остается мультиметр.

Определение характеристик

Для проверки исправности стабилитрона и соответствия паспортным данным необходимо проверить его работу на разных напряжениях. Сначала надо прозвонить в режиме измерения сопротивления. Убедившись в отсутствии пробоя, на первом и третьем контакте колодки выставляется разность потенциалов 0,1 вольта. Это достигается регулировкой резистора. Проверка происходит в режиме измерения постоянного напряжения. Анод проверяемого стабилитрона подсоединяется к третьему контакту колодки, а катод подключается к первому. Щупы тестера подсоединяются к ним же.

Регулировкой переменного резистора увеличиваем обратное напряжение на полупроводнике до тех пор, пока оно не перестанет изменяться. Если это произошло, значит, стабилитрон достиг напряжения стабилизации и работает нормально. Иногда требуется определить его вольтамперную характеристику. Тогда к предыдущей схеме добавляется тестер, работающий в режиме амперметра, соединенный последовательно со стабилитроном. При изменении вольтажа с определенным шагом, снимаются значения напряжения и тока, строится график, получается вольтамперная характеристика.

Как проверить стабилитрон мультиметром? — Diodnik

как проверить стабилитрон мультиметром

Стабилитрон внешне очень сильно похож на диод, но применение его в радиотехнике совсем иное. В большинстве случаев стабилитроны используют для стабилизации напряжения (в слаботочных схемах). Подключаются они параллельно потребителю. В процессе работы, в случае завышенного напряжения, стабилитрон начинает пропускать ток через себя, таким образом, стабилитрон сбрасывает напряжение на схеме. Стабилитроны в своем большинстве не рассчитаны на большие токи, а при сильных токах они очень быстро нагреваются, и в дальнейшем у них возникает тепловой пробой.

Как проверить стабилитрон мультиметром?

Проверка стабилитрона мультиметром производится по аналогии с проверкой диода. Проверяют стабилитрон фактически любым тестером в режиме проверки диода или в режиме омметра.

Исправный стабилитрон всегда должен проводить ток только в одном направлении, собственно как и диод. Для примера выбраны стабилитроны два стабилитрона: Д814А и КС191У, один из них заведомо с дефектом.

Как проверить стабилитрон мультиметром

Проверка Д814А. В данном случае стабилитрон, как и диод, пропускает ток, лишь в одном направлении.

Как проверить стабилитрон мультиметром

Проверка КС191У. Этот стабилитрон явно имеет дефект, т.к. он вообще не способен пропускать через себя ток.

Как проверить стабилитрон мультиметром

О том, как проверить напряжение стабилитрона, подробно читаем тут.

Как проверить стабилитрон мультиметром на плате?

Проверяя стабилитрон на плате необходимо понимать, что другие радиокомпоненты могут сильно влиять на показания мультиметра или другого прибора. Если есть сомнения в проверяемом экземпляре, тогда лучше всего его демонтировать с платы и проверять отдельно.

comments powered by HyperComments

КАК ПРОВЕРИТЬ СТАБИЛИТРОН

Представленный здесь прибор — это стабилитронометр для тестирования значения напряжения неизвестного стабилитрона.Стабилитрон — это радиоэлектронный компонент, который поддерживает постоянное напряжение на его контактах, причём напряжение источника Vs должно быть больше, чем собственное напряжение стабилитрона Vz, а ток ограничивается с помощью сопротивления Rs, чтоб его текущее значение всегда было меньше, чем его максимальная мощность.

Схема простейшего метода проверки напряжения стабилитрона

Схема простейшего метода проверки напряжения стабилитрона

Радиолюбители и все те, кто хорошо дружит с электроникой знают, что задача нахождения стабилитрона с нужными характеристиками (рабочим напряжением) скучная и кропотливая. Случается, что нужно перебрать очень много разных экземпляров, пока не найдётся нужное значение Vz. Проверка состояния стабилитрона обычно делается с помощью обычной шкалы мультиметра для измерения диодов, этот тест дает нам точное представление о состоянии компонента, но не дает нам определить значение Vz. В общем тестер стабилитронов это действительно удобный прибор, когда мы хотим быстро выяснить значение напряжения Vz.

Параметры прибора

  • Питание 220 В.
  • Цифровая индикация Vz
  • Меряет стабилитроны на напряжения от 1 В до 50 В
  • Два токовых режима — 5 мА и 15 мА

Схема устройства для проверки стабилитронов

Как видно, схема проста. Напряжение с трансформатора с двумя вторичными обмотками 24V, выпрямляется и фильтруется для получения постоянного напряжения около 80 В, затем поступает на стабилизатор напряжения, образованный элементами (R1, R2, D1, D2 и Q1), который снижает напряжение до 52V, чтобы избежать превышения максимального предела рабочего напряжения микросхемы LM317AHV.

КАК ПРОВЕРИТЬ СТАБИЛИТРОН 1

Обратите внимание на буквенный индекс микросхемы. У LM317AHV входное напряжение, в отличии от LM317T, может достигнуть максимума 57V.

КАК ПРОВЕРИТЬ СТАБИЛИТРОН прибором

На LM317AHV собран генератор постоянного тока, куда добавлен выключатель (S2) совместно с резистором (R4), чтобы выбрать два тестовых режима (5 мА и 15 мА) в качестве источника тока для испытуемого стабилитрона.

цифрового измеритель напряжения стабилитронов

Этот тестер легко собрать из стандартных компонентов. Готовый импульсный блок питания от какого-нибудь DVD или тюнера спутниковой системы, а вольтметр либо в виде промышленного модуля на микроконтроллере, либо взять мультиметр D-830.

Поделитесь полезной информацией с друзьями:

Как проверить стабилитрон | Все своими руками

Приставка для проверки стабилитронов

Здравствуйте уважаемые посетители. За сорок лет увлечения радиотехникой скопилась целая куча стабилитронов и отечественных, и импортных, и с маркировкой и без, в связи с этим появилась необходимость в изготовлении приставки для мультиметра для определения целостности и параметров стабилитронов. По крайней мере напряжения стабилизации. На изготовление приставки ушло пару часов, это с травлением платы. За основу взял схемку стабилизатора тока (см. рис. 1)из документации на микросхему LM431, аналог 142ЕН19.

Как проверить стабилитрон, shema4

Схема получившейся приставки представлена на рисунке 2. На транзисторе VT1 и микросхеме DA1 142ЕН19 собран стабилизатор тока, при номиналах резисторов, указанных на схеме, ток стабилизации равен примерно семнадцати миллиамперам. В качестве индикатора прохождения тока при измерении с схему включен светодиод. Можно использовать любой светодиод с прямым током не менее 20ма. Для изготовления приставки потребуется сетевая вилка от какой ни будь не нужной китайской хрени(см. фото 1, 2).Схема проверки стабилитронов, vilka Приставка к мультиметру для проверки стабилитронов, vidВернее запчасть от нее, показанная на фото 2. Приставка собрана на небольшой печатной платке из стеклотекстолита. Внешний вид платы показан на фото 3 и 4. Конструкция приставки надеюсь тоже понятна. Что бы контактные штыри бывшей сетевой вилки свободно входили в гнезда прибора, припаивают их к платке будучи вставленными в них.

На схеме указано максимально возможное входное напряжение для данных элементов – 35В. Но если при этом напряжении проверять, например стабистор КС107А, то на нем упадет напряжение 0,7В, а 34,3В — I•Ur2 упадет на транзисторе VT1. Где I•Ur2 – падение напряжения на резисторе R2 = 0,017А•200 = 3,4В. 34,3 – 3,4 = 30,9В – это такое напряжение упадет на транзисторе VT1, отсюда мощность коллектора транзистора составит U•I = 30,9В•0,017А ? 0,525Вт. Мощность коллектора транзистора КТ503 – 0,35Вт. Так, что замер надо производить очень быстро или заменить транзистор более мощным, или уменьшить напряжение питания приставки, что уменьшит количество марок проверяемых стабилитронов. Ну я думаю вы для себя это решите. Скачать рисунок печатной платы.

Скачать “Как проверить стабилитрон” Plata_Stab.rar – Загружено 480 раз – 5 KB

Да, ток стабилизации зависит от номинала резистора R2, R2 = 2,5/Iст, где Iст – величина тока стабилизации. До свидания. К.В.Ю.

Еще одно дополнение. С помощью этой приставки можно определять диоды с барьером Шоттки, у которых, как известно маленькое прямое падение напряжения. На снимке показана проверка 1N5819 — с барьером Шоттки. Uпр. = 0,24В. Отлично!

Как узнать напряжение стабилизации стабилитрона мультиметром. Как проверить микросхему стабилизатор

Многим из нас часто приходилось сталкиваться с тем, что из-за одной, вышедшей из строя, детальки перестаёт работать целое устройство. Что бы избежать недоразумений, следует уметь быстро и правильно проверять детали. Этому я и собираюсь Вас научить. Для начала, нам потребуется мультиметр

Транзисторы биполярные

Чаще всего, сгорают в схемах транзисторы. По крайней мере у меня. Проверить их на работоспособность очень просто. Для начала, стоит прозвонить переходы База-Эмиттер и База-Коллектор. Они должны проводить ток в одном направлении, но не пускать в обратном. В зависимости от того, ПНП это транзистор или НПН, ток они будут проводить к Базе или от Базы. Для удобства, можем представить его в виде двух диодов

Так же стоит прозвонить переход Эмиттер-Коллектор. Точнее это 2 перехода. . . Ну в прочем не суть. В любом транзисторе, ток не должен проходить через них в любом направлении, пока транзистор закрыт. Если же на Базу подали напряжение, то ток протекая через переход База-Эмиттер откроет транзистор, и сопротивление перехода Эмиттер-Коллектор резко упадёт, почти до нуля. Учтите, что падение напряжения на переходах транзистора обычно не ниже 0,6В. А у сборных транзисторов (Дарлингтонов) более 1,2В. По этому некоторые «китайские» мультиметры с батарейкой в 1,5В просто не смогут их открыть. Не поленитесь/поскупитесь достать себе мультиметр с «Кроной»!

Учтите, что в некоторых современных транзисторах параллельно с цепью Коллектор-Эмиттер встроен диод. Так что стоит изучить даташит на Ваш транзистор, если Коллектор-Эмиттер звонится в одну сторону!

Если хотя бы одно из утверждений не подтверждается, то транзистор нерабочий. Но прежде чем заменить его, проверьте оставшиеся детали. Возможно причина в них!

Транзисторы униполярные (полевые)

У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.

Если при проверке приложить положительный щуп тестового прибора к затвору транзистора n-типа, а отрицательный — к истоку, зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком и истоком прибор покажет некоторое сопротивление. Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед «прозвонкой» канала «сток-исток» замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным. В противном случае транзистор признается неисправным.

Учтите ещё, что в современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод. Для того чтобы избежать досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Проверить это легко, пролистав даташит на Ваш экземпляр.

Конденсаторы – ещё одна разновидность радиодеталей. Они тоже довольно часто выходят из строя. Чаще всего умирают электролитические, плёнки и керамика портятся несколько реже. . .

Для начала, платы стоит обследовать визуально. Обычно мёртвые электролиты надуваются, а многие даже взрываются. Присмотритесь! Керамические конденсаторы не надуваются, но могут взорваться, что тоже заметно! Их, как и электролиты надо прозванивать. Ток они проводить не должны.

Перед началом электронной проверки конденсатора необходимо провести механическую проверку целостности внутреннего контакта его выводов.

Для этого достаточно поочерёдно согнуть выводы конденсатора под небольшим углом, и аккуратно поворачивая их в разные стороны, а также слегка потягивая на себя, убедиться в их неподвижности. В случае, если хотя бы один вывод конденсатора свободно вращается вокруг своей оси, или свободно вынимается из корпуса, то такой конденсатор считается не пригодным и дальнейшей проверке не подлежит.

Ещё один интересный факт – заряд/разряд конденсаторов. Это можно заметить, если мерять сопротивление конденсаторов, ёмкостью более 10мкФ. Оно есть и у меньших емкостей, но не так заметно выражен! Как только мы подключим щупы, сопротивление будет единицы Ом, но в течении секунды вырастет до бесконечности! Если мы поменяем щупы местами, эффект повторится.

Соответственно, если конденсатор проводит ток, или не заряжается, то он уже ушёл в мир иной.

Резисторы – их больше всего на платах, хотя они не так то уж и часто выходят из строя. Проверить их просто, достаточно сделать одно измерение – проверить сопротивление.

Если оно меньше бесконечности и не равно нулю, то резистор скорее всего пригоден к использованию. Обычно, мёртвые резисторы чёрные – перегретые! Но чёрные бывают и живыми, хотя их тоже стоит заменить. После нагрева, их сопротивление могло измениться от номинального, что плохо повлияет на работу устройства! Вообще стоит прозвонить все резисторы, и если их сопротивление отличается от номинального, то лучше заменить. Заметьте, что отличие от номинала на ± 5% считается допустимым. . .

Проверить диоды по моему проще всего. Померили сопротивление, с плюсом на аноде, показывать должно несколько десятков/сотен Ом. Померили с плюсом на катоде – бесконечность. Если не так, то диод стоит заменить. . .

Индуктивность

Редко, но всё же из строя выходят индуктивности. Причины тому две. Первая – КЗ витков, а вторая – обрыв. Обрыв вычислить легко – достаточно проверить сопротивление катушки. Если оно меньше бесконечности, то всё ОК. Сопротивление индуктивностей обычно не более сотен Ом. Чаще всего несколько десятков. . .

КЗ между витков вычислить несколько труднее. Надо проверить напряжение самоиндукции. Это работает только на дросселях/трансформаторах, с обмотками в хотя бы 1000 витков. Надо подать импульс низковольтный на обмотку, А после, замкнуть эту обмотку лампочкой газоразрядной. Фактически, любя ИН-ка. Импульс обычно подают, слегка касаясь контактов КРОНЫ. Если ИН-ка в итоге мигнёт, то всё норм. Если нет, то либо КЗ витков, либо очень мало витков. . .

Как видите, способ не очень точный, и не очень удобный. Так что сначала проверьте все детали, и лишь потом грешите на КЗ витков!

Оптопары

Оптопара фактически состоит из двух устройств, поэтому проверять её немного сложнее. Сначала, надо прозвонить излучающий диод. Он должен как и обычный диод прозваниваться в одну сторону и служить диэлектриком в другую. Затем надо подав питание на излучающий диод померить сопротивление фотоприёмника. Это может быть диод, транзистор, тиристор или симистор, в зависимости от типа оптопары. Его сопротивление должно быть близким к нулю.

Затем убираем питание с излучающего диода. Если сопротивление фотоприёмника выросло до бесконечности, то оптопара целая. Если что-то не так, то её стоит заменить!

Тиристоры

Ещё один важный ключевой элемент – тиристор. Так же любит выходить из строя. Тиристоры так же бывают симметричные. Называются симисторы! Проверить и те и другие просто.

Берём омметр, плюсовой щуп подключаем к аноду, минусовой к катоду. Сопротивление равно бесконечности. Затем управляющий электрод (УЭ) подсоединяем к аноду. Сопротивление падает до где-то сотни Ом. Затем УЭ отсоединяем от анода. По идее, сопротивление тиристора должно остаться низким – ток удержания.

Но учтите, что некоторые «китайские» мультиметры могут выдавать слишком маленький ток, так что если тиристор закрылся, ничего страшного! Если он всё же открыт, то убираем щуп от катода, а через пару секунд присоединяем обратно. Теперь тиристор/симистор точно должен закрыться. Сопротивление равно бесконечности!

Если некоторые тезисы не совпадают с действительностью, то Ваш тиристор/симистор нерабочий.

Стабилитрон – фактически один из видов диода. По этому проверяется он так же. Заметим, что падение напряжения на стабилитроне, с плюсом на катоде равно напряжению его стабилизации – он проводит в обратную сторону, но с бОльшим падением. Чтоб это проверить, мы берём блок питания, стабилитрон и резистор на 300. 500Ом. Включаем их как на картинке ниже и меряем напряжение на стабилитроне.

Мы плавно подымаем напряжение блока питания, и в какой-то момент, на стабилитроне напряжение перестаёт расти. Мы достигли его напряжения стабилизации. Если этого не случилось, то либо стабилитрон нерабочий, либо надо ещё повысить напряжение. Если Вы знаете его напряжение стабилизации, то прибавьте к нему 3 вольта и подайте. Затем повышайте и если стабилитрон не начал стабилизировать, то можете быть уверены, что он неисправен!

Стабисторы

Стабисторы – одна из разновидностей стабилитронов. Единственное их отличие в том, что при прямом включении – с плюсом на аноде, падение напряжения на стабисторе равно напряжению его стабилизации, а в другую сторону, с плюсом на катоде, ток они не проводят вообще. Достигается это включением нескольких кристаллов-диодов последовательно.

Учтите, что мультиметр с напряжением питания в 1,5В чисто физически не сможет вызвонить стабистор скажем на 1,9В. По этому включаем наш стабистор как на картинке ниже и меряем напряжение на нём. Подать надо напряжение около 5В. Резистор взять сопротивлением в 200. 500Ом. Повышаем напряжение, меряя напряжение на стабисторе.

Если на какой то точке оно перестало расти, или стало расти очень медленно, то это и есть его напряжение стабилизации. Он рабочий! Если же он проводит ток в обе стороны, или имеет крайне низкое падение напряжения в прямом включении, то его стоит заменить. По видимому, он сгорел!

Проверить различного рода шлейфы, переходники, разъёмы и др. довольно просто. Для этого надо прозвонить контакты. В шлейфе каждый контакт должен звониться с одним контактом на другой стороне. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. Если же он звонится с несколькими, то скорее всего в шлейфе КЗ. Тоже самое с переходниками и разъёмами. Те из них, которые с обрывом или КЗ считаются бракованными и использованию не подлежат!

Микросхемы/ИМС

Их великое множество, они имеют много выводов и выполняют разные функции. Поэтому проверка микросхемы должна учитывать её функциональное назначение. Точно убедиться в целости микросхем довольно трудно. Внутри каждая представляет десятки-сотни транзисторов, диодов, резисторов и др. Есть такие гибриды, в которых одних только транзисторов более 2000000000 штук.

Одно можно сказать точно – если Вы видите внешние повреждения корпуса, пятна от перегрева, раковины и трещины на корпусе, отставшие выводы, то микросхему стоит заменить – она скорее всего с повреждением кристалла. Греющаяся микросхема, назначение которой не предусматривает её нагрева, должна быть так же заменена.

Полная проверка микросхем может осуществляться только в устройстве, где она подключена так, как ей полагается. Этим устройством может быть либо ремонтируемая аппаратура, либо специальная, проверочная плата. При проверке микросхем используются данные типового включения, имеющиеся в спецификации на конкретную микросхему.

Ну всё, ни пуха Вам, и поменьше горелых деталек!

Понадобилось собрать входные стабилизирующие цепи по питанию для устройства на основе микроконтроллера PIC16F628 стабильно работающего при напряжении от 5 вольт. Это не сложно. Взял интегральную микросхему PJ7805 и на её основе в соответствии со схемой из даташита сделал. Подал напряжение и на выходе получил 4,9 вольта. Всего скорей, что этого вполне достаточно, но упрямство, замешанное на педантичности, взяло верх.

Достал коробушку с интегральными стабилизаторами и вознамерился перемерить все соответствующего достоинства. А чтобы вдруг не ошибиться даже соответствующую схемку выложил перед собой. Однако энтузиазм закончился уже на первом же компоненте. Этот «ёжик без ручек, без ножек» из соединительных проводов с крокодилами желал жить своей жизнью и воли радиолюбителя подчинялся с большим трудом. Да к тому же проверяемый стабилизатор на выходе показал 4,86 вольта, чем поверг мой оптимизм в уныние.

Нет тут нужно что-то более существенное, например какой-то пусть и простой но, тем не менее, пробник что ли. Забил в поисковик яндекса и получил то, что видите на фото «Комплекс контроля интегральных стабилизаторов напряжения». Ну, это не для средних радиолюбительских умов. Стало ясно, что велосипед придётся изобретать.

Составленная схема явно уступает верхней картинке, ну тут уж ничего не поделаешь, что можем. Конденсатор С1 устраняет генерацию при скачкообразном включении входного напряжения, С2 служит для защиты от переходных помеховых импульсов. Их ёмкость решил взять 100 мкФ. Вольтаж в соответствии с напряжением проверяемого стабилизатора. Ставить конденсаторы как можно ближе к корпусу интегрального стабилизатора. Диод VD1 1N4148 не позволит конденсатору на выходе стабилизатора разрядится через него после выключения (это чревато выходом стабилизатора из строя). U Вх. интегрального стабилизатора должно быть выше U Вых. минимум на 2,5 вольта. Нагрузку подбирать так же в соответствии с возможностями тестируемого стабилизатора.

На роль корпуса был выбран самодельный вариант оборудованный контактными штырями для соединения с мультиметром (минус в гнездо «сom», плюс в «V»). В качестве соединительного элемента выводов проверяемого компонента со схемой можно приспособить вот такой тройной штыревой контакт. В мою задачу входит проверка трёхвыводных интегральных стабилизаторов рассчитанных на напряжение не более 12 вольт поэтому в схему поставлю два конденсатора 100 мкф х 16 В. Диод согласно схемы.

В просверленные точно в соответствии с диаметром штыревых контактов отверстия их и вставляем, с внутренней стороны надеваем на каждый штырь по соответствующей (махонькой) металлической шайбочке, смочив активным флюсом и плотно прижав припаиваем каждую шайбу к соответствующему штырю не допуская соединения пар штырь — шайба между собой. Для этого шайбы нужно подточить, центральную с обеих сторон, крайние с одной. Отверстия по месту установки нужно
именно просверлить, если проколоть шилом образуется внутренняя неровность краёв отверстия и ровно + плотно установить шайбу не выйдет. Штыри, для прочности, также обязательно должны находится на общем твёрдом основании из диэлектрика.

Контактные площадки образованные местом пайки штырей и шайб становятся местом установки компонентов схемы. Получается компактно, также выполняется рекомендация минимального расстояния конденсаторов от выводов проверяемого интегрального стабилизатора. С соединительными проводами всё просто, главное взять их соответствующего цвета (для «+» красный, для «-» чёрный) и никакой путаницы не будет.

Подумав, установил кнопку включения нажимного действия, поставлена в разрыв плюсового (красного) провода на входе питания. Всё таки это удобство из разряда необходимых. Тройной штыревой контакт понадобилось «доработать» — немного согнуть, тут так, либо один раз подогнать контакты под выводы компонентов, либо перед каждым соединением ножки стабилизаторов гнуть под контакты.

Пробник — приставка к мультиметру готов. Вставляю в соответствующие гнёзда мультиметра штыри пробника, предел измерения выставляю 20 вольт постоянного напряжения, провода подвода электрического тока подсоединяю к лабораторному блоку питания в соответствии с их расплюсовкой, устанавливаю для проверки стабилизатор (попался на 10 вольт), выставляю соответственно на БП напряжение 15 вольт и нажимаю кнопку включения на пробнике. Устройство сработало, на дисплее 9,91 В. Далее в течении минуты разобрался со всеми трёхвыводными стабилизаторами на напряжение до 12 вольт включительно. Несколько, из числа бережно хранимых, оказались негодными.

Итого

Давно понятно, что вот такие простенькие пробники — приставки в радиолюбительском деле так же необходимы, как и весьма серьёзные измерительные приборы, но вот делать их (возиться с их изготовлением) попросту лень, а напрасно, и понимание этого приходит каждый раз когда это простенькое устройство всё же было собрано и оказало неоценимую помощь в творческих начинаниях. Автор — Babay iz Barnaula .

Обсудить статью КАК ПРОВЕРИТЬ МИКРОСХЕМУ СТАБИЛИЗАТОР

Идентификация стабилитронов оказывается затруднительной, поскольку для этого необходим источник напряжения, превышающий напряжение стабилизации. Большинство стабилитронов, применяемых радиолюбителями, имеют напряжение стабилизации 3. 15 В, поэтому подойдет источник с напряжением 15. 20В. Сделать такой источник компактным и легким можно, применив один гальванический элемент с повышающим преобразователем напряжения.

Предлагаемое устройство поможет выявить из диодной группы такие элементы, как стабилитроны и определить их основной параметр — напряжение стабилизации. Его схема показана на рис. 1, и конструктивно оно выполнено в виде приставки к цифровому мультиметру. В устройстве применен модуль преобразователя напряжения от калькулятора «Электроника МК-24». Он представляет собой законченную конструкцию в корпусе размерами ЗОх13*8 мм и залит эпоксидной смолой. У него три вывода, имеющих обозначения «+», «-» и «VBbo», на корпусе имеется маркировка КФ-29. При подключении к выводам питания гальванического элемента типоразмера АА (1,5 В) на выводе «V^» присутствует постоянное напряжение около 15 В. Работоспособность модуля сохраняется при уменьшении питающего напряжения до 0,8 В. Резистор R1 совместно с испытуемым стабилитроном, который подключают к контактным площадкам Х1 и Х2, образуют параметрический стабилизатор напряжения.
Цифровой мультиметр М-830. М-838 или аналогичный устанавливают в режим измерения постоянного напряжения на пределе 20 В и подключают с соблюдением полярности к гнездам XS1 и XS2. При отсутствии подключаемого элемента мультиметр должен показать выходное напряжение преобразователя. Выводы тестируемого элемента соединяют с контактными площадками Х1 и Х2, если это стабилитрон и он соединен анодом с минусом, а катодом с плюсом, то мультиметр покажет напряжение стабилизации данного стабилитрона. При обратном подключении его выводов показания будут не более 0,7 В.

Если показания при подключении элемента в одной полярности не изменяются, а в другой не превышают 0,7 В — это диод или стабилитрон с более высоким, чем 20 В, напряжением стабилизации. Для симметричного стабилитрона в обоих случаях показания будут одинаковыми и меньше выходного напряжения преобразователя. Если показания муль-тиметра близки к нулю в обоих направлениях подключения, испытуемый элемент (диод или стабилитрон) пробит. При максимальных показаниях в обоих вариантах подключения тестируемого элемента — обрыв.
Устройство собирают на печатной плате из двусторонне фольгированного стеклотекстолита, чертеж которой показан на рис. 2. Одна сторона является лицевой панелью на которой сделаны контактные площадки Х1 и Х2. На второй стороне монтируют детали методом поверхностного монтажа без сверления отверстий. Их выводы укорачивают и припаивают непосредственно к печатным проводникам. Через отверстия в плате контакты Х1 и Х2 соединяют с контактными площадками второй стороны.
Контактные пластины для установки гальванического элемента изготовляют также из двусторонне фольгированного стеклотекстолита, зачищают, залуживают и припаивают к печатным проводникам платы. К минусовой пластине, для улучшения контакта с элементом питания, припаивают пружинящий лепесток. Преобразователь напряжения КФ-29 приклеивают к плате, а его выводы припаивают к соответствующим контактным площадкам. Гнезда XS1 и XS2 подбирают по диаметру щупов мультиметра и закрепляют на плате гайками. Гнезда можно использовать любые из имеющихся в наличии, изменив способ их крепления Выключатель питания SA1 — любой малогабаритный движковый.

При отсутствии модуля КФ-29 преобразователь можно собрать по схеме, приведенной на рис. 3. На транзисторе VT1 и трансформаторе Т1 собран бло-кинг-генератор. Импульсы напряжения с коллектора транзистора VT1 выпрямляются диодом VD1, сглаживаются конденсатором СЗ. Постоянное напряжение через резистор R1 поступает на гнезда XS1 и XS2. Элементы этого преобразователя монтируют на аналогичной плате, причем лицевая панель не меняется а печатные проводники и монтаж на второй стороне выполняют в соответствии с рис. 4.
В устройстве применены резисторы МЛТ, С2-33, оксидные конденсаторы С1 и СЗ — импортные, С2 — К10-17. Для изготовления трансформатора Т1 используют ферритовое кольцо типоразмера К10*6хЗ мм магнитной проницаемостью 1000. 2000, грани которого предварительно притупляют с помощью надфиля и обматывают тонкой виниловой лентой. Первичная обмотка содержит 20 витков, а вторичная — 10 витков провода ПЭВ-2 0,31 Диод 1N5817 заменим на 1N5818, 1N5819. Транзистор — КТ3102 с любым буквенным индексом Выключатель SA1 — любой малогабаритный движковый.
После монтажа устанавливают гальванический элемент и включают SA1. Если собранный преобразователь не начинал работать, необходимо поменять местами выводы одной из обмоток трансформатора Т1. Внешний вид приставки показан на рис. 5. Ее можно использовать и со стрелочным мультиметром.

В процессе ремонта бытовой техники или других электронных устройств: монитора, принтера, микроволновки, блока питания компьютера или автомобильного генератора (например, Valeo, БОШ или БПВ) и т.д. возникает необходимость проверить целостность элементов. Расскажем подробно про тестирование диодов.

Учитывая разнообразие этих радиоэлементов, единой методики проверки их работоспособности не существует. Соответственно, для каждого класса есть свой способ тестирования. Рассмотрим, как проверить диод шоттки, фотодиод, высокочастотный, двунаправленный и т.д.

Что касается приборов для тестирования, мы не станем рассматривать экзотические способы проверки (например, батарейку и лампочку), а будем пользоваться мультиметром (подойдет даже такая простая модель, как DT-830b) или тестером. Эти приборы практически всегда есть дома у радиолюбителя. В некоторых случаях потребуется собрать несложную схему для тестирования. Начнем с классификации.

Диоды относятся к простым полупроводниковым радиоэлементам на основе p-n перехода. На рисунке представлено графическое обозначение наиболее распространенных типов этих устройств. Анод отмечен «+», катод – «-» (приведено для наглядности, в схемах для определения полярности достаточно графического обозначения).

Типы диодов, указанные на рисунке:

  • А – выпрямительный;
  • B – стабилитрон;
  • С – варикап;
  • D – СВЧ-диод (высоковольтный);
  • E – обращенный диод;
  • F – туннельный;
  • G – светодиод;
  • H – фотодиод.

Теперь рассмотрим способы проверки для каждого из перечисленных видов.

Проверяем выпрямительный диод и стабилитрон

Защитный диод, а также выпрямительный (включая силовой)или шоттки можно проверить при помощи мультиметра (или воспользоваться омметром), для этого переводим прибор в режим прозвонки так, как это показано на фотографии.

Щупы измерительного прибора присоединяем к выводам радиоэлемента. При присоединении красного провода («+») к аноду, а черного («-») к катоду дисплей мультиметра (или омметра) отобразит значение порогового напряжения тестируемого диода. После того, как меняем полярность, прибор должен показать бесконечно большое сопротивление. В этом случае можно констатировать исправность элемента.

Если при обратном подключении мультиметр регистрирует утечку, значит, радиоэлемент «сгорел» и нуждается в замене.

Заметим, данную методику проверки можно использовать для тестирования диодов на генераторе автомобиля.

Тестирование стабилитрона осуществляется по сходному принципу, правда, такая проверка не позволяет определить, осуществляется ли стабилизация напряжения на заданном уровне. Поэтому нам потребуется собрать простую схему.

Обозначения:

  • БП – регулируемый блок питания (отображающий ток нагрузки и напряжение);
  • R – токоограничительное сопротивление;
  • VT – тестируемый стабилитрон или лавинный диод.

Принцип проверки следующий:

  • производим сборку схемы;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 200 В;

  • включаем блок питания и начинаем постепенно увеличивать величину напряжения, пока амперметр на блоке питания не покажет, что через цепь протекает ток;
  • подключаем мультиметр, как указано на рисунке и измеряем величину напряжения стабилизации.

Тестирование варикапов

В отличие от обычных диодов, у варикапов p-n переход обладает непостоянной емкостью, величина которой пропорциональна обратному напряжению. Проверка на обрыв или замыкание для этих элементов осуществляется также, как у обычных диодов. Для проверки емкости потребуется мультиметр, у которого есть подобная функция.

Для тестирования потребуется установить соответствующий режим мультиметра, как показано на фото (А) и вставить деталь в разъем для конденсаторов.

Тестирование высоковольтных диодов

Проверить высоковольтный диод СВЧ печи тем же способом, что и обычный, не получится, в виду его особенностей. Для тестирования этого элемента, понадобится собрать схему (показанную на рисунке ниже), подключенную к блоку питания 40-45 вольт.

Напряжения 40-45 вольт будет достаточно для поверки большинства элементов данного типа, методика тестирования — как у обычных диодов. Величина сопротивления R должна быть в пределах от 2кОм до 3,6кОм.

Диоды туннельного и обращенного типа

Учитывая, что ток, протекающий через диод, зависит от напряжения, приложенного к нему, тестирование заключается в анализе этой зависимости. Для этого потребуется собрать схему, например, такую, как показана на рисунке.

Перечень элементов:

  • VD – тестируемый диод туннельного типа;
  • Uп – любой гальванический источник питания, у которого ток разряда около 50 мА;
  • Сопротивления: R1 – 12Ω, R2 – 22Ω, R3 – 600Ω.

Диапазон измерений, выставленный на мультиметре,не должен быть меньше тока максимума диода, этот параметр указан в даташит (datasheet) радиоэлемента.

Видео: Пример проверки диода мультиметром

Алгоритм тестирования:

  • устанавливается максимальное значение на переменном резисторе R3;
  • подключается тестируемый элемент, с соблюдением указанной на схеме полярности;
  • уменьшая величину R3, наблюдаем за показаниями измерительного прибора.

Если элемент исправен, в процессе измерения прибор покажет увеличение тока до I max диода, после чего последует резкое уменьшение этой величины. При дальнейшем повышении напряжения ток уменьшится до I min , после чего снова начнет расти.

Тестирование светодиодов

Проверка светодиодов практически ничем не отличается от тестирования выпрямительных диодов. Как это делать, было описано выше. Светодиодную ленту (точнее ее smd элементы), инфракрасный светодиод, а также лазерный, проверяем по той же методике.

К сожалению, мощный радиоэлемент данной группы, у которого повышенное рабочее напряжение, проверить указанным способом не получится. В этом случае дополнительно понадобится стабилизированный источник питания. Алгоритм тестирования следующий:

  • собираем схему, как показано на рисунке. На блоки питания выставляется рабочее напряжение светодиода (указано в даташит). Диапазон измерения на мультиметре должен быть до 10 А. Заметим, что можно использовать зарядное устройство в качестве БП, но тогда необходимо добавить токоограничивающие сопротивление;

  • измеряем номинальный ток и выключаем блок питания;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 20 В, и подключаем прибор параллельно тестируемому элементу;
  • включаем блок питания и снимаем параметры рабочего напряжения;
  • сравниваем полученные данные с указанными в даташит, и на основании этого анализа определяем работоспособность светодиода.

Проверяем фотодиод

При простой проверке измеряется обратное и прямое сопротивление помещенного под источник света радиоэлемента, после чего его затемняют и повторяют процедуру. Для более точного тестирования потребуется снять вольтамперную характеристику, сделать это можно при помощи несложной схемы.

Для засветки фотодиода в процессе тестирования можно использовать в качестве источника освещения лампу накаливания мощностью от 60Вт или поднести радиодеталь к люстре.

У фотодиодов иногда встречается характерный дефект, который проявляется в виде хаотического изменения тока. Для обнаружения такой неисправности необходимо подключить тестируемый элемент так, как это показано на рисунке, и измерять величину обратного тока в течение пары минут.

Если в процессе тестирования уровень тока будет оставаться неизменным, значит, фотодиод можно считать рабочим.

Тестирование без выпайки.

Как показывает практика, протестировать диод не выпаивая, когда он находится на плате, как и другие радиодетали (например, транзистор, конденсатор, тиристор и т.д.), не всегда удается. Это связано с тем, что элементы в цепи могут давать погрешность. Поэтому перед тем, как проверить диод, его необходимо выпаять.

Данная статья посвящена проверке радиодеталей (транзисторов, диодов, конденсаторов и т.д.) и опубликована в связи со многими обращениями ко мне по этому поводу.
Как проверить радиодетали
Для проверки исправности радиодеталей потребуется измерительный прибор – мультиметр. Приобретать лучше не дешевый китайский ширпотреб, который не только быстро выходит из строя, но и существенно ограничен в возможностях за счет слабого тока. В идеале мультиметр должен питаться от батарейки типа «крона».
Резистор
Невооруженным взглядом можно определить сгоревший резистор – он почернеет. Даже если на нем остается нужное сопротивление, его следует заменить.

Для проверки мультиметр ставится в режим омметра. Затем подсоединяем щупы (полярность не имеет значения) к выводам резистора и сравниваем замеренное сопротивление с номинальным. Номинал указывается либо на плате, либо на самом резисторе. Некоторые резисторы маркируются не цифрами, а разноцветными полосками, расшифровываемыми по нехитрой схеме. Отклонения в пределах 5% от номинала считаются нормой.

Конденсатор
Так же, как и резистор, может визуально сигнализировать о неисправности. Конденсатор может вздуться или вообще взорваться и вытечь. Заметить это легко. В таком случае измерения не требуются – деталь подлежит безоговорочной замене.
Еще один нехитрый тест конденсатора – проверка целостности контактов. Для этого «ножки» конденсатора нужно слегка согнуть, после чего попытаться повернуть их или вытащить. Если наблюдается хотя бы минимальный люфт – конденсатор неисправен.
В других случаях конденсатор проверяют омметром. Значение сопротивления должно равняться бесконечности. Если нет – замена.
Диод
Диод проводит ток в одном направлении и не проводит в обратном. Стрелочным мультиметром это легко проверить в режиме омметра. Положительный щуп – к аноду, отрицательный – к катоду. В таком положении ток должен проходить. Если поменять щупы местами, то результат замера будет равноценен обрыву цепи.
Цифровой мультиметр ставится в специальный режим проверки диодов. Фиксируемое напряжение на германиевом диоде должно быть в районе 200-300мВ, на кремниевом – 550 – 700. Если напряжение зашкаливает за 2000мВ – диод неисправен.
Транзистор
Биполярный
Проще всего представить транзистор в виде двух «встречных» диодов. Проверка должна быть соответствующей: база-эмиттер и база-коллектор. Ток должен идти в одном направлении, а в другом – нет.
Переход эмиттер-коллектор не должен прозваниваться вообще! Если ток проходит при отсутствии напряжения на базе, транзистор необходимо выбросить.
Полевой
Перед проверкой необходимо замкнуть между собой все контакты, чтобы разрядилась емкость затвора. После этого омметр должен фиксировать сопротивление, равное бесконечности на всех выводах. В противном случае деталь подлежит замене.
Стабилитрон
Проверка стабилитрона – процесс более деликатный. Цифровым мультиметром здесь пользоваться не рекомендуется – он запросто может «пробить» исправную деталь в обоих направлениях. Если есть аналоговый тестер, то проверить можно так же, как диод. Если нет – есть различные способы проверки. Опишем простейший.

Понадобится блок питания с регулировкой подаваемого напряжения. Подключаем к аноду резистор сопротивлением 300-500 Ом, затем подключаем блок питания. Замеряем напряжение на стабилитроне, поднимая его значение на блоке питания. Достигнув определенного значения (лучше, если оно известно заранее – напряжение стабилизации), напряжение должно перестать расти. Если продолжает – меняем стабилитрон.

Тиристор

Положительный щуп омметра – к аноду, отрицательный – к катоду. Сопротивление должно равняться бесконечности. Если коснуться управляющим электродом анода, то должно зафиксироваться сопротивление порядка 100 Ом. При отсоединении УЭ это значение должно остаться фиксированным. Если результат на любом из этих этапов отличается от описанного, тиристор необходимо заменить.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *