Главная страница » Какой лучше стабилизатор напряжения релейный или тиристорный

Какой лучше стабилизатор напряжения релейный или тиристорный

  • автор:

Какой стабилизатор напряжения лучше: основные виды и их особенности

kakoj-stabilizator-vybrat

Для стабилизации напряжения используется целый ряд устройств, работающих на разных технических принципах. Несмотря на конструкцию, стабилизаторы должны выполнять одну функцию – обеспечивать потребителя качественным напряжением, не зависящим от колебаний сети. В критических ситуациях домашние стабилизирующие устройства должны автоматически и очень быстро отключать нагрузку от сети и сами отключаться во избежание аварии.

Содержание:

Какие бывают стабилизаторы

Стабилизация напряжения может быть реализована различными способами.

По конструкции стабилизирующие устройства можно разделить на две группы:

  • Электромеханические устройства;
  • Электронные устройства;

К первой группе относятся стабилизаторы с серводвигателем. Ко второй группе относятся следующие приборы:

    ;
  • Устройства на полупроводниковых ключах (тиристоры, симисторы);
  • Приборы с двойным преобразованием;
  • Феррорезонансные стабилизаторы.

stabilizatory-tipy

Каждое устройство обладает определёнными достоинствами и недостатками. Они хорошо заметны при сравнении технических параметров, поэтому для выбора конкретной модели нужно знать принцип работы каждого стабилизатора для дачи или дома.

Стабилизатор с релейным переключением

relejnyj

Релейный стабилизатор напряжения выравнивает сетевое напряжение путём коммутации обмоток силового трансформатора. Принцип его работы крайне прост. Входное напряжение поступает на первичную обмотку силового трансформатора и одновременно на плату контроля и управления. Вторичная обмотка разделена на одинаковые секции и число витков в ней больше, чем в первичной. То есть трансформатор в случае необходимости может повышать или понижать подаваемое напряжение. Плата управления включает в себя выпрямитель, контроллер и транзисторные ключи, управляющие электромагнитными реле.

Если напряжение сети отклонилось от номинала на определённую величину, контроллер через транзисторный ключ включает реле. Оно своими контактами изменяет коэффициент трансформации, то есть переключает вторичную обмотку на повышение или понижение. В результате напряжение на выходе постоянно удерживается в допуске, но оно никогда не будет равно 220В, поскольку, переключая секции обмотки, устройство допускает ступенчатое, а не плавное изменение напряжения. Но чем большее количество реле применяется в схеме устройства, тем выше его точность.

Релейный стабилизатор обладает следующими положительными качествами:

  • Хорошая скорость переключения;
  • Большой интервал входных напряжений;
  • Неискажённая форма напряжения;
  • Доступная цена.

Недостатки релейного устройства:

  • Ступенчатое переключение;
  • Низкая точность;
  • Шум при работе;
  • Возможное подгорание контактов.

Релейные стабилизаторы так же имеют ограничение по мощности, что определяется невозможностью контактов реле коммутировать слишком большие токи.

Выбор производителя. При выборе стабилизатора напряжения также обращайте внимание на производителя. Например, много стабилизаторов напряжения якобы отечественных марок производятся в Китае, и имеют завышенные показатели, отличающиеся от реальности. Но есть и те, которые отличаются своей надежностью и хорошим сроком службы. В качестве положительного примера можно привести стабилизаторы от компании «Энергия», которые пользуются большой популярностью среди покупателей, и имеют множество положительных отзывов, которые легко можно найти на страницах в интернете. Весь ассортимент вы можете найти на сайте официального представителя компании по этой ссылке.

Стабилизатор с серводвигателем

Электромеханический стабилизатор напряжения так же, как и релейный, работает с использованием силового трансформатора. В устройстве имеется плата контроля, но она управляет регулировкой не с помощью реле, а выбирает угол поворота серводвигателя. На его оси установлена каретка с угольным роликом или щёткой, которая перемещается по обмотке силового трансформатора. Пропорционально углу поворота изменяется напряжение на выходе.

elektromexanicheskij

Устройство обеспечивает очень точную установку выходного напряжения, но скорость выравнивания напряжения очень низкая. Приведем небольшой пример. Если напряжение сети будет меньше определённого предела, импульсный блок питания персонального компьютера может на доли секунды отключиться и пока серводвигатель перемещает контакт чтобы повысить напряжение, компьютер уйдёт в перезагрузку. Таким образом, можно потерять важные данные.

Главным недостатком электромеханического стабилизатора считается необходимость регулярного обслуживания. Пыль и грязь, попадающие под движущийся контакт, могут подгорать или вызывать появление искр, поэтому электромеханические стабилизаторы нельзя применять там, где используется газовое оборудование.

К преимуществам сервоприводного стабилизатора можно отнести следующие параметры:

  • Высокая точность установки;
  • Большой интервал входных напряжений;
  • Низкая цена.

Но критичные особенности сервоприводных стабилизаторов – медленное выравнивание напряжения, шум при работе и необходимость регулярного обслуживания, существенно снижают область их применения.

Релейный или электромеханический

relejnyj-ili-elektromexanicheskij

Определить, какой стабилизатор лучше, релейный или электромеханический, достаточно сложно. Если для потребителя важна высокая точность установки, а изменения в сети происходят нечасто и в небольших пределах, то оптимальным вариантом будет применение электромеханического стабилизатора. Здесь главным критерием выбора будет точность и невысокая стоимость. Релейный стабилизатор обеспечивает очень хорошую скорость срабатывания, но при этом точность установки напряжения на выходе будет не такой высокой.

Сетевое напряжение, поступающее в жилые дома, регламентируется стандартом, при котором отклонение от 220В должно составлять не более ± 10%. При этом некоторые бытовые устройства допускают нормальную работу с отклонениями сети от номинала до 15% так, что напряжение, на выходе релейного стабилизатора, изменяющееся в пределах 198-242 вольта, можно считать нормой.

Скорость переключения обмоток трансформатора релейного стабилизатора составляет 15-20 мс, что вполне нормально для большинства бытовых электронных устройств. Стоимость релейного стабилизатора невысока, а срок его службы обычно соответствует сроку службы реле, равному числу срабатываний, которое в большинстве случаев превышает 1 000 000.

Электронный стабилизатор напряжения

elektronnyj

К этой группе относятся тиристорные или симисторные устройства для выравнивания напряжения, а так же приборы, использующие двойное преобразование или инверторы. Феррорезонансные стабилизаторы уже давно не используются для питания домашней техники, и могут применяться только на производстве.

Электронный стабилизатор напряжения, выполненный на полупроводниковых ключах, работает на том же принципе, что и релейный прибор, только в качестве коммутирующих элементов в нём используются тиристоры или симисторы.

По сути, эти полупроводниковые приборы представляют собой электронные реле, управляемые напряжением. Они так же переключают обмотки трансформатора по аналогии с реле. Вместо реле в электронном стабилизаторе используется два тиристора или один симистор. Отсутствие механических деталей обеспечивает длительный срок службы, а возможность полупроводниковых приборов коммутировать большие токи позволяет таким устройствам работать с мощными нагрузками.

Недостатки тиристорных стабилизаторов:

  • Сильно искажённая форма напряжения на выходе;
  • Высокая стоимость;
  • Невысокая точность.

Самым перспективным классом электронных стабилизаторов можно считать устройства, работающие с двойным преобразованием сетевого напряжения. Кроме высокой цены, они не имеют серьёзных недостатков. При решении вопроса, какой стабилизатор лучше релейный или электронный, предпочтение отдаётся инверторном устройству, полностью собранному на полупроводниках, если цена не играет существенной роли.

Такой прибор обладает рядом преимуществ перед другими моделями:

  • Мгновенная скорость обработки любых изменений;
  • Отличная точность коррекции;
  • Гладкая синусоида на выходе;
  • Большой диапазон входных величин;
  • Поддержка стабильной частоты.

Единственное, что очень важно для данной конструкции – это охлаждение мощных полупроводниковых приборов. Для этого в стабилизаторе предусмотрен малошумный вентилятор. Также подобные устройства имеют очень высокую цену, поэтому если это является решающим моментом при выборе, то лучше всего отдавать предпочтение релейным стабилизаторам, как наиболее практичному варианту для применения в самых различных областях, а в особенности в быту.

Отечественные стабилизаторы напряжения

energiya

На рынке отечественных электротехнических устройств одним из безусловных лидеров является компания «Энергия». В числе её продукции имеются линейки стабилизаторов напряжения. Это сервоприводные New Line, релейные Voltron и тиристорные Classic, а так же Hybrid, в которых используется электромеханический и релейный принцип стабилизации, в зависимости от значения напряжения в сети.

Стабилизаторы рассчитаны на мощность от 500 Вт до 30 кВт и на большой диапазон колебаний сетевого напряжения. Все стабилизаторы «Энергия» имеют электронную систему защиты по всем параметрам, а некоторые устройства оборудованы информационным дисплеем.

Главные отличия релейных, электронных и инверторных стабилизаторов напряжения

Главные отличия релейных, электронных и инверторных стабилизаторов картинка

Одним из самых эффективных способов защиты бытовой и специализированной электротехники от скачков и просадок сетевого напряжения является установка стабилизатора. Но все ли типы данных устройств способны одинаково справляться с проблемой некачественного напряжения? Сравним в нашей статье технические характеристики и особенности работы релейных, электронных и инверторных стабилизаторов и выясним, какие из них лучше всего использовать для ответственных потребителей.

Содержание

Какие бывают стабилизаторы и в чем их отличия?

Стабилизатор переменного напряжения является преобразующим устройством, которое корректирует поступающее из сети напряжение и доводит его до номинального значения (220/230 В для однофазной и 380/400 В для трехфазной сети), которое поддерживается в непрерывном режиме и поступает на подключенные электроприборы.

В настоящее время на российском рынке электропитания представлено несколько типов стабилизаторов напряжения, а именно: релейные, электромеханические, электронные и инверторные модели. В зависимости от типа они способны нивелировать сетевые перепады, просадки и перенапряжения в определенных диапазонах с различной скоростью и точностью, фильтровать сетевые помехи и защищать нагрузку от кратковременных пропаданий электросети.

Подробно разберем главные отличия самых распространенных на отечественном рынке стабилизаторов напряжения.

Характеристики и особенности релейных стабилизаторов

В данных устройствах применена трансформаторная технология коррекции сетевого напряжения. В своем составе приборы имеют автотрансформатор, блок силовых реле и электронную плату управления.

Процесс стабилизации напряжения в релейных моделях выполняется следующим образом: плата управления устройства непрерывно анализирует значение входного сигнала, поступающего из сети и, если возникает скачок или просадка напряжения, то силовое реле стабилизатора коммутирует необходимый сегмент трансформаторной обмотки, чтобы входное напряжение приобрело номинальное значение.

Релейные стабилизаторы напряжения картинка

Схема релейного стабилизатора напряжения картинка

Поскольку регулировка напряжения в данных изделиях происходит ступенчато, то их реакция на изменение параметров сети происходит с некоторой задержкой, которая может доходить до 10-20 мс. Из-за недостаточного быстродействия такие стабилизаторы не могут обеспечить качественную защиту от резкого повышения напряжения или его просадок. Частые скачки, происходящие в электросети, снижают качество работы силового реле и значительно ускоряют его износ.

Точность выходного напряжения у релейных моделей зависит от количества ступеней регулировки и скорости их. Как правило, погрешность выходного сигнала у них может доходить до 10% от номинального значения, что не подходит для электрочувствительных приборов. Кроме того, из-за дискретности стабилизации происходят микроразрывы в электропитании и искажение формы выходного сигнала.

За счет того, что в схеме релейных моделей нет электронных компонентов, которые могут подвергаться нагреванию или страдать от конденсата, устройства не требуют специального охлаждения и способны работать при минусовой температуре внешней среды, доходящей до -20° С.

Также важно отметить, что реле в стабилизаторах во время своей работы издает характерные щелчки, из-за чего приборы, как правило, устанавливаются в нежилых помещениях.

Основные преимущества и недостатки релейных стабилизаторов приведены в таблице ниже:

  • Медленная скорость срабатывания
  • Ступенчатая регулировка напряжения
  • Большая погрешность коррекции
  • Искажение формы выходного сигнала
  • Щелчки во время работы
  • Небольшой срок службы из-за быстрого износа силового реле
  • Невысокая стоимость
  • Работа при минусовых температурах
  • Не требуется охлаждение

Релейные стабилизаторы в основном выбирают для защиты нетребовательной к качеству электропитания нагрузки (например, кухонных электроприборов, систем освещения, телевизионной техники и некоторых электроинструментов) в относительно стабильных электросетях. Приборы могут устанавливаться в отдельных технических помещениях, не имеющих отопления.

Характеристики и особенности электронных стабилизаторов

По схеме своей работы данные устройства аналогичны релейным типам, только в своем составе вместо силовых реле они имеют электронные ключи – симисторы или тиристоры.

Процесс коррекции напряжения в электронных моделях управляется микропроцессором, который при обнаружении отклонения параметров сети активизирует силовой ключ, коммутирующий необходимую обмотку трансформатора для получения выходного напряжения, максимально приближенного к номинальному значению.

Электронный стабилизатор напряжения картинка

Схема электронного стабилизатора напряжения картинка

Электронные ключи имеют меньший размер по сравнению с силовыми реле, поэтому такие стабилизаторы более компактны в размерах. Кроме того, в схеме работы электронных моделей отсутствуют какие-либо подвижные элементы, поэтому они считаются более надежными и издают меньше шума при работе по сравнению с релейными типами.

Электронным стабилизаторам, как и релейным моделям, характерна дискретность (ступенчатость) коррекции напряжения. Хотя она может быть более плавной и проявляться в меньшей степени, но все-таки может вызывать помехи в работе некоторых электрочувствительных нагрузок.

Большое количество обмоток трансформатора и высокая скорость их переключения (быстродействие – в среднем составляет 10 мс) позволяет электронным моделям справляться с резкими скачками напряжения и корректировать входной сигнал с более высокой точностью по сравнению с устройствами релейного типа. В среднем диапазон входных напряжений в таких моделях составляет 130-270 В, а погрешность выходного сигнала – 5%. Однако устройства не способны справляться со значительными просадками сети, а точности стабилизации входного сигнала может быть недостаточно для потребителей, особо чувствительных к качеству напряжения, например, компьютерной техники.

Также важным недостатком электронных приборов является несинусоидальная форма выходного напряжения (трапециевидная или прямоугольная, в зависимости от модели), которая может быть вызвана работой силовых ключей – симисторов/тиристоров. Такая особенность функционирования накладывает ограничение на использование данных устройств для определенных типов нагрузок. Кроме того, некоторые электронные модели имеют небольшую перегрузочную способность, которая может составлять всего 40%. Частые и значительные перегрузки в таких устройствах могут приводить к раннему выходу из строя силовых ключей.

Основные преимущества и недостатки электронных стабилизаторов приведены в следующей таблице:

  • Ступенчатая регулировка напряжения
  • Невысокая скорость и точность стабилизации для электрочувствительных нагрузок
  • Диапазон стабилизации зависит от количества витков обмотки трансформатора
  • Искаженная форма выходного сигнала
  • Небольшая перегрузочная способность
  • Более быстрая реакция на изменение параметров сети по сравнению с релейными моделями
  • Отсутствие механических элементов
  • Компактные размеры
  • Бесшумная работа
  • Больший эксплуатационный ресурс, чем у релейных моделей

Электронные модели обладают более высокими техническими характеристиками по сравнению с релейными типами, что позволяет их применять в электросетях, в которых случаются резкие и значительные перепады напряжения. Однако для нагрузки с электродвигателями они не подойдут, так как искаженная форма напряжения может негативно сказаться на работе такой нагрузки. Также не рекомендуется использовать данный тип стабилизаторов с профессиональной аудио- и видеотехникой по причине помех, создаваемых в процессе коммутации обмоток трансформатора, которые могут испортить качество звука или изображения.

Характеристики и особенности инверторных стабилизаторов

Инверторные стабилизаторы являются устройствами нового поколения за счет совершенного иного принципа действия по сравнению с другими типами. Они основаны на технологии двойного преобразования энергии или Instant Reaction & Double Conversion (IRDC), предполагающей мгновенную реакцию и двойное преобразование.

В схеме работы инверторных моделей нет автоматического трансформатора и коммутационных элементов, а вместо них присутствуют такие элементы, как выпрямитель, конденсатор, инвертор и микроконтроллер.

Инверторные стабилизаторы напряжения картинка

Схема инверторного стабилизатора напряжения картинка

Во время работы инверторных устройств входное нестабильное напряжение сначала выпрямляется и накапливается в конденсаторе, а затем с помощью инвертора переводится обратно в переменное, но уже с эталонными характеристиками. В результате на нагрузку непрерывно подаётся сигнал высокой точности (±2%) и идеальной синусоидальной формы независимо от сетевых параметров. За счет такого принципа действия инверторные модели способны мгновенно реагировать на скачки и просадки сетевого напряжения в достаточно широком диапазоне, который составляет 90-310 В.

Благодаря наличию конденсатора, который накапливает электроэнергию, инверторные модели обеспечивают надёжную защиту нагрузки от значительных и резких перепадов электроэнергии, а также кратковременных пропаданий сетевого напряжения (до 0,2 с). Поскольку инверторные модели в своем составе не имеют механических подвижных элементов, они не издают неприятных звуков во время своей работы. Однако в некоторых моделях, как правило, с выходной мощностью более 1 кВА, может присутствовать небольшой шум от системы охлаждения, сравнимый с работой кулеров персонального компьютера или ноутбука.

Инверторные стабилизаторы обладают самым большим количеством электронных защит по сравнению с релейными и симисторным/тиристорными устройствами. Они способны автоматически восстанавливаться после сетевых аварий (когда напряжение выходит за рабочий диапазон стабилизатора), короткого замыкания, перегрузки по выходу, перегрева и сбоев в работе. Кроме того, встроенные сетевые фильтры и варистор выполняют защиту от импульсных перенапряжений и высокочастотных помех.

Инверторные модели способны эффективно работать со многими бензиновыми и дизельными генераторами, корректируя не только значение напряжения, но и его форму. Высокая перегрузочная способность (до 150%) позволяет устройствам справляться с пусковыми токами оборудования, в составе которого присутствуют электромоторы.

Практически во всех моделях присутствует автоматический байпас, с помощью которого обеспечивается бесперебойная работа нагрузки в случаях, когда в работе стабилизатора происходит сбой или повреждение.

Единственный существенный недостаток, свойственный инверторным моделям, – это их высокая цена. Но это объясняется тем, что данные устройства обладают гораздо большим функционалом и возможностями по сравнению с другими типами стабилизаторов. Основные преимущества и недостатки инверторных стабилизаторов приведены в сравнительной таблице ниже:

  • Высокая цена
  • Запрещена работа при минусовых температурах из-за возможного попадания конденсата на электронные компоненты
  • Мгновенное быстродействие
  • Расширенный диапазон входного напряжения
  • Высокая точность стабилизации
  • Напряжение идеальной синусоидальной формы
  • Полный набор электронных защит
  • Фильтрация сетевых помех и импульсных перенапряжений
  • Бесшумная или малошумная работа
  • Компактные размеры

За счет своих высоких технических характеристик и широкого функционала инверторные модели активно используются не только в быту, но и в коммерческих и производственных сферах. Они способны обеспечить надёжную защиту от нестабильного напряжения самых электрочувствительных приборов, к которым относятся системы отопления, насосное оборудование, холодильные установки, системы видеонаблюдения, мультимедийная техника, компьютерные устройства и др.

Сравнение основных характеристик разных типов стабилизаторов

Сравнение основных технических характеристик релейных, электронных и инверторных стабилизаторов приведено в таблице:

Тип стабилизатора Тип регулирования Время реакции, мс Диапазон входного напряжения, В Точность стабилизации выходного напряжения, % Коррекция искажений сети Коррекция входного коэффициента мощности Автономное питание нагрузки, мс
Инверторный непрерывное 0 90-310 2 есть есть 200
Релейный дискретное до 20 160-260 от 5 до 10 нет нет
Электронный дискретное 5-20 130-270 от 5 до 10 нет нет

Модельный ряд инверторных стабилизаторов «Штиль»

Крупнейший российский производитель систем электропитания «Штиль» выпускает широкий модельный ряд однофазных и трехфазных инверторных стабилизаторов с выходной мощностью от 0,35 до 20 кВА, среди которых:

  • однофазные модели настенного и напольного/стоечного исполнения с выходной мощности от 0,35 до 20 кВА;
  • трехфазные модели напольного/стоечного исполнения с выходной мощности от 6 до 20 кВА;
  • модели конфигурации 3 в 1 напольного/стоечного исполнения с выходной мощности от 6 до 20 кВА (предназначены для защиты однофазной нагрузки в трехфазной электросети).

Инверторные стабилизаторы напряжения «Штиль» картинка

Основные технические характеристики инверторных стабилизаторов производства «Штиль» приведены в следующей таблице:

Технические характеристики Показатели
Быстродействие мгновенное (0 мс)
Предельный диапазон входного напряжения 90-310 В
Точность стабилизации ±2%
Форма выходного напряжения чистая синусоида
Защита от кратковременного пропадания сети есть (0,2 с)
Защита от высокочастотных помех есть (диапазон 100 кГц – 30 МГц)
Защита от импульсных перенапряжений есть (встроенный варистор 2 кВ, 1/50 мкс)
Другие виды защиты от перегрузок по выходу, внутреннего перегрева, КЗ, сетевых аварий, сбоев в работе
Автоматический байпас есть (в моделях от 0,8 кВА)

Где купить инверторные стабилизаторы «Штиль»?

Купить модели инверторных стабилизаторов можно в официальном интернет-магазине производителя «Штиль». На сайте представлены исчерпывающие сведения по каждому устройству, включая их технические характеристики, функционал, сферы применения и отзывы пользователей об их практическом применении в различных условиях.

При необходимости всегда можно обратиться за помощью в подборе оборудования к специалистам компании. Консультации по подбору, установке и эксплуатации стабилизаторов осуществляются в онлайн-чате, по электронной почте и телефону. Кроме того, на сайте опубликованы подготовленные инженерами компании тематические статьи, которые также помогут покупателям правильно подобрать необходимое устройство.

Представленные в интернет-магазине товары всегда есть в наличии и доступны для заказа как физическими, так и юридическими лицами. Для покупателей действует быстрая доставка в любой город России. При заказе можно выбрать удобный способ оплаты и оформить кредит на покупку необходимого оборудования.

Как выбрать стабилизатор 220 В, какой лучше: релейный, электронный, инверторный?

Мы в СтабЭксперт.ру прекрасно понимаем, как тяжелы проблемы выбора стабилизатора или любого другого оборудования, поэтому составили подробную статью, но очень простым языком.

Зачем этот прибор? Стабилизаторы напряжения служат для поддержания номинальных параметров электропитания в сети конечного пользователя. Необходимость их применения продиктована нестабильностью работы внешних электросетей, выраженной отклонениями, либо резкими изменениями (скачками) величины питающего напряжения.

Типы современных стабилизаторов

Существуют различные типы стабилизаторов, отличающихся устройством и принципом действия, с которыми желательно ознакомиться, прежде чем приступать к выбору прибора. К основным разновидностям стабилизаторов, представленным на рынке в настоящее время, относятся следующие типы:

  • электромеханические и электродинамические устройства с использованием сервопривода;
  • релейные;
  • электронные (тиристорные и симисторные);
  • гибридные;
  • инверторные.

Принцип работы стабилизаторов. В основу принципа работы первых трёх типов положен метод изменения коэффициента трансформации автотрансформатора.

Примечание. Автотрансформатор представляет собой вид трансформатора, в котором имеется только одна обмотка, различное число витков которой служат в качестве первичной и вторичной обмоток.

Плюсы и минусы разных типов стабилизаторов

Устройства с сервоприводом

В данном виде стабилизаторов, включающих в себя электромеханические и электродинамические приборы, реализовано плавное регулирование напряжения, которое осуществляется следующим образом. Часть витков обмотки автотрансформатора, намотанной на тороидальный сердечник, зачищается от изоляции с торцевой или боковой стороны сердечника, в зависимости от конструкции. На этом участке по обмотке перемещается токосъёмный контакт, через который осуществляется подключение первичной обмотки к сети питания.

Электродинамическая серия от итальянского бренда

Стабилизаторы с сервоприводом принято разделять на устройства электромеханического и электродинамического типа. Критерием разделения служит конструкция токосъёмного контакта. Стабилизаторы со скользящими контактами щёточного типа принято называть электромеханическими. К электродинамическому типу относят устройства, в которых при перемещении контакта происходит не скольжение, а качение, то есть, подвижный контакт представляет собой графитовый вращающийся ролик, который при движении сервопривода катится по обмотке. Очевидно, что никакой принципиальной разницы между электромеханическими и электродинамическими стабилизаторами не существует, поэтому данное разделение, честно говоря, выглядит не совсем оправданным.

Как работают? Нагрузка стабилизатора подключена к вторичной обмотке, имеющей фиксированное количество витков. Таким образом, при перемещении токосъёмного контакта изменяется количество витков первичной обмотки, то есть, происходит плавное изменение коэффициента трансформации. Управление движением контакта осуществляется специальным серверным электродвигателем, имеющим малую частоту вращения или оснащённым понижающим редуктором. В свою очередь, электродвигатель управляется электронным блоком, осуществляющим контроль выходного напряжения. При превышении напряжением установленной нормы, электронный контроллер формирует команду на вращение серводвигателя в направлении, соответствующем увеличению коэффициента трансформации, что приводит к нормализации вторичного напряжения. При понижении напряжения на нагрузке происходит обратный процесс. То есть, система регулирования всегда стремится к равновесному состоянию, при котором напряжение на нагрузке имеет номинальное значение.

Безусловным преимуществом электромеханических и электродинамических стабилизаторов является высокая точность стабилизации, достигающая 2 – 3 %. По этому параметру устройства с сервоприводом опережают релейные и электронные приборы.

Диапазон допустимого изменения значений питающего напряжения ограничивается за счёт того, что для токосъёма доступен только наружный слой обмотки автотрансформатора, что позволяет изменять коэффициент трансформации в ограниченных пределах. Высокая точность стабилизации, обусловлена способностью приборов с сервоприводом, плавно регулировать напряжение на выходе. Однако это свойство имеет и обратную сторону. Перемещение токосъёмного контакта происходит достаточно медленно, вследствие чего скорость реагирования электромеханических и электродинамических стабилизаторов на резкие скачки входного напряжения весьма значительно уступает аналогичным характеристикам приборов другого типа.

Среди других недостатков электромеханических и электродинамических стабилизаторов следует упомянуть:

  • наличие движущихся частей, которое при прочих равных условиях снижает надёжность устройства;
  • постоянно движущийся по обмотке токосъёмный контакт подвержен механическому износу и обгоранию вследствие искрения, что к тому же исключает использование стабилизаторов с сервоприводом во взрывоопасных помещениях;
  • работающий сервопривод издаёт некоторый шум, что в зависимости от места установки прибора может вызывать ощущение дискомфорта.

Справедливости ради стоит добавить, что роликовый контакт электродинамических устройств существенно более устойчив к износу, чем скользящий контакт щёточного типа, поэтому, если выбор пал на стабилизатор с сервоприводом, предпочтение стоит отдать электродинамическому.

Стабилизаторы релейного типа

Этот вид регуляторов также основан на изменении коэффициента трансформации автотрансформатора. Однако в данном случае это происходит ступенчато. Регулировочная часть первичной обмотки имеет ряд выводов (отпаек), расположенных через определённое количество витков. Каждая из отпаек может подключаться к электросети нормально разомкнутыми контактами соответствующего электромагнитного реле.

Примечание. Нормально разомкнутыми называются контакты реле, находящиеся в разомкнутом состоянии при обесточенной катушке.

Как работают? Управление электромагнитными реле осуществляет контроллер, отслеживающий уровень напряжения на нагрузке и в случае его отклонения подающий напряжение на катушку реле, коммутирующего требуемую отпайку. Разумеется, в любой момент времени включенным может быть только одно реле. Ну а поскольку регулировка носит ступенчатый характер, контроллер всегда включает то реле, отпайка которого обеспечивает наиболее близкое к номиналу значение вторичного напряжения.

Стабилизаторы релейного типа уверенно превосходят электромеханические по такому показателю, как скорость реакции на резкие изменения величины питающего напряжения. Время переключения электромагнитных реле обычно не превышает 10 миллисекунд.

Однако наличие определённого количества фиксированных отпаек обмотки автотрансформатора снижает точность регулирования напряжения. Улучшить этот показатель в рамках данной конструкции можно путём увеличения количества отпаек и уменьшением числа витков между ними. Но проблема заключается в том, что с увеличением количества отводов обмотки значительно усложняется и становится громоздкой схема автотрансформатора, а если учесть, что к каждой отпайке должно подключаться индивидуальное реле, то становится понятно, что данный путь приведёт к существенному удорожанию изделия и загромождению внутреннего пространства корпуса.

К сказанному следует добавить следующее. Контакты электромагнитного реле, безусловно, более надёжны, чем токосъёмный контакт устройств с сервоприводом, тем не менее, они являются движущимися механическими частями, которым свойственны износ и обгорание.

Электронные стабилизаторы

Данный класс устройств аналогичен релейным стабилизаторам, только коммутацию отпаек осуществляют не механические контакты электромагнитных реле, а электронные ключи – тиристоры. Как и в релейных стабилизаторах, в электронных устройствах к каждой отпайке обмотки присоединён свой электронный ключ, и так же как в случае с реле, одновременно в открытом состоянии не может находиться более, чем один ключ. При использовании обычных тиристоров, имеющих одностороннюю проводимость, каждый ключ должен представлять собой два тиристора, включенных встречно – параллельно. Применение в конструкции симметричных тиристоров (симисторов) позволяет использовать в каждом ключе только один прибор. Открывание тиристора происходит при подаче электрического импульса на управляющий электрод.

Серия Lider W

Электронная серия Lider W от одноименного производителя

Электронные стабилизаторы имеют неоспоримое преимущество перед рассмотренными ранее приборами, выраженное в полном отсутствии каких либо механических контактов и движущихся частей.

Серия Энергия PREMIUM

Электронные симисторные стабилизаторы серии Энергия PREMIUM, читайте полный обзор.

Кроме этого, электронные устройства обладают самой быстрой реакцией на изменение напряжения, обусловленной высокой скоростью переключения электронных ключей. С другой стороны, тиристорные и симисторные стабилизаторы обладают всеми недостатками, присущими приборам, использующим ступенчатое регулирование. Возможность увеличения точности стабилизации этих устройств ограничивается техническими трудностями, связанными с увеличением числа отводов обмотки и количества электронных ключей.

Но, эти минусы ничто, в сравнении с надежностью и скоростью срабатывания. А по сочетанию цена-надежность, тиристорно-симисторное семейство вообще лидеры из всех.

Гибридные устройства

Идея создания таких стабилизаторов заключается в том, чтобы придать изделию лучшие черты, присущие приборам различного типа. Так, распространённые в настоящее время гибридные устройства совмещают в себе принципы сервоприводных и релейных стабилизаторов. В диапазоне входного напряжения, доступного для сервоприводного устройства, стабилизация осуществляется с высокой точностью, свойственной приборам этого типа.

Энергия Hybrid

В случаях, когда питающее напряжение выходит за рамки, доступные электромеханическому регулированию, в работу вступает релейный регулятор, который добавляет или исключает из вторичной обмотки группу витков, дополнительно изменяя таким способом коэффициент трансформации.

В результате, такие устройства обладают высокой точностью стабилизации, свойственной приборам, использующим сервопривод, и при этом способны работать в расширенном диапазоне питающего напряжения, что присуще релейным стабилизаторам.

Стабилизаторы инверторного типа

Данные устройства называют также стабилизаторами двойного преобразования. Суть преобразований сводится к следующему. Входное сетевое напряжение сначала выпрямляется, после чего поступает на вход инвертора, где вновь преобразуется в переменное, имеющее синусоидальную форму.

Штиль R 1000i

Модель Штиль R 1000i малой мощности

Главной частью устройства является инвертор, осуществляющий преобразование с помощью мощных IGBT – транзисторов, управляемых микропроцессорным блоком. Именно этот блок ответственен за синусоидальность выходного напряжения.

Отступление. Зачем обращать внимание на синусоидальность?

Попытаемся разобраться, почему так важна именно синусоидальная форма питающего напряжения. Дело в том, что переменное напряжение, представляющее собой периодическую функцию времени, как любая периодическая функция, в соответствии с теоремой Фурье может быть представлена как сумма синусоидальных гармонических составляющих, имеющих частоту, кратную частоте исходной функции. И только правильная синусоида не имеет таких составляющих, называемых в электротехнике гармониками.

Из сказанного следует то, что любое, даже самое малое отклонение напряжения, имеющего промышленную частоту 50 Герц от синусоидальной формы, приводит к появлению дополнительных сигналов, имеющих частоту 100 Гц, 150 Гц, 200 Гц и так далее. Указанные высокочастотные составляющие оказывают неблагоприятное воздействие на различные приёмники электроэнергии, являясь источниками паразитного излучения электромагнитных волн. По этой причине, наличие в питающем напряжении высокочастотных составляющих строго регламентируется ГОСТ путём установления норм коэффициента несинусоидальности, коэффициента n – й гармонической составляющей, коэффициентов обратной и нулевой последовательностей.

Сетевое напряжение изначально приобретает синусоидальную форму при его выработке на электростанциях ввиду базовых свойств электрических генераторов. Разумеется, любой генератор, представляющий собой физический объект, отличается от математической модели. Поэтому незначительные отклонения от синусоиды появляются уже на стадии производства электроэнергии. Далее свою лепту в ухудшение формы кривой напряжения могут вносить потребители, эксплуатирующие оборудование, создающее высокочастотные помехи, распространяющиеся по сети. Поэтому получаемое нами из сети напряжение изначально может быть в той или иной степени несинусоидальным.

Рассмотренные ранее стабилизаторы, работающие по принципу изменения коэффициента трансформации, не внося собственных искажений в форму кривой напряжения, всё же не могут исправить исходную несинусоидальность, трансформируя её и передавая нагрузке. В этом смысле инверторные преобразователи отличаются тем, что они сами формируют синусоиду. Устройства данного типа находятся на стадии совершенствования, поэтому форма выдаваемого ими напряжения постоянно приближается к идеальной синусоиде с каждой новой разработкой.

По всем остальным техническим характеристикам инверторные стабилизаторы превосходят устройства другого типа, имея более высокую точность стабилизации, значительно более широкий диапазон входного напряжения. Инверторы более компактны и легки, в первую очередь по причине того, что не имеют трансформатора.

Финальные советы

Если дочитав до данного отрезка статьи, вы не определились с выбором, то вот вам параметры от стабэксерт.ру, которые следует учитывать при выборе конкретного стабилизатора.

Мощность устройства

На это следует обратить внимание в первую очередь, вне зависимости от типа выбираемого прибора. Для определения требуемой мощности стабилизатора необходимо просуммировать электрическую нагрузку всех электроприборов, напряжение на которых предполагается стабилизировать. Значение мощности обычно указывается в паспорте электроприбора, и как правило, на прикреплённом к нему шильдике (табличке). Мощность лампы освещения указывается на её цоколе. Лучше, если мощность стабилизатора будет превышать установленную мощность электроприборов процентов на 20 – 30. Это убережет устройство от перегрузок и продлит срок его эксплуатации.

При оценке мощности следует учесть одно обстоятельство. Существует понятие полной, активной и реактивной мощности. В первую очередь нас интересует активная составляющая, измеряемая в ваттах, значение которой чаще всего и указывается на электроприборе. Однако некоторые производители стабилизаторов могут указывать полную мощность своих изделий, которая измеряется в вольт-амперах (В·А). Чтобы опять не вдаваться в теорию, для получения значения активной мощности, в этом случае можно умножить величину полной мощности на 0,9. Основная часть нагрузки бытовых потребителей носит активный характер. Реактивной составляющей обладают электрические двигатели и люминесцентное освещение.

Полезное: для вычисления мощности используйте наш калькулятор.

Тип стабилизатора

Этот выбор основывается на оценке основных характеристик рассматриваемых типов устройств и особенностях местной системы электроснабжения. Сравнивая параметры стабилизаторов различных типов, можно заметить, что выигрывая в одном качестве, прибор часто уступает в иных качествах стабилизаторам другого типа. В этом случае решающим фактором при выборе должен служить анализ параметров электроснабжения.

Например, в районах, характеризующихся устойчивыми длительными отклонениями уровня питающего напряжения в ту или иную сторону, логично сделать выбор в пользу стабилизаторов с плавной системой регулирования, имеющим сервопривод, как обладающих наиболее высокой точностью стабилизации. В такой же ситуации, но с отклонениями питающего напряжения в очень большом диапазоне, спасти положение поможет стабилизатор гибридного типа. Если же электропитание сопровождается весьма частыми и резкими скачками уровня напряжения, более надёжную защиту обеспечат стабилизаторы релейного или электронного типа.

Что касается устройств инверторного типа, то по заявляемым производителями характеристикам они являются универсальными. Главным вопросом с технической точки зрения является то, насколько близка к синусоиде реальная кривая выдаваемого этими аппаратами напряжения. Претензия к этим приборам с экономической точки зрения состоит в том, что пока они являются самыми дорогими.

Про надежность

И ещё о вопросах надёжности. Говоря о том, что электронные устройства, лишённые механических контактов и движущихся частей обладают более высокой надёжностью, мы только излагаем общую теоретическую концепцию. На практике, надёжность электронных приборов зависит от того, насколько удачным является само схемное решение, где каждый используемый компонент должен работать в рамках допустимых параметров и иметь соответствующее качество изготовления. Особенно большим потоком отказов страдают новые устройства, не прошедшие апробацию длительной эксплуатацией. Поэтому не редки ситуации, когда старые добрые механические устройства оказываются надёжнее новых электронных систем. Безусловно, это не следует принимать, как обязательное правило, эти явления скорее относятся к болезням роста. Будущее, конечно же, за электронной и микропроцессорной техникой, функциональность и надёжность которой постоянно растёт.

Выжимка. Самый сок статьи

Информация ниже, дана в «среднем», но каждая конкретная модель может выходить за рамки «среднего».

Релейные приборы: быстрее сервоприводных и шире по диапазону, но регулирование ступенчатое, т.е. на лампах накаливания могут быть видны переключения ступеней (в виде мерцания). Издают негромкие щелчки при переходе со ступени на ступень ( Редакция: СтабЭксперт.ру

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *